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Foreword

In Reinforcement Learning there is an agent whose task is to perform a certain duty. We
define state and action spaces in a way related to the details of the problem at hand, and the
agent can either learn to perform the duty in such a way that for every trial it places more
value to the rewards of the immediate states compared to future states–we say that the
agent takes actions greedily– or it can predominantly take greedy actions while occasionally
exploring by taking random moves. This is the exploration-exploitation balance. Usually, a
parameter is assigned to this trait, ε, where ε = 0 implies greedy behaviour while ε = 1 is
the other extreme. In this project, we wish to find an algorithm that will find the optimal
epsilon, i.e an epsilon that offers the best balance between exploring and exploiting. After
that we shall use this algorithm in Grid World, discuss some pitfalls of this implementation
and then investigate transferability of knowledge in this context in attempts to mitigate the
pitfalls we shall mention. We shall introduce all necessary information as we move along,
and in cases where there is information to share that is not directly related to the project
itself, we shall include the details as an appendix instead.
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Introduction and Background

Machine learning is often defined as an application of artificial intelligence that affords
systems the ability to automatically learn and improve from experience without being ex-
plicitly programmed. Other views include, but are not limited to, the statistical sciences
perspective in which machine learning is merely computational methods applied to statis-
tics. In the standard setting, there are various types of machine learning such as supervised
learning wherein the training data has correct labels as well as reinforcement learning. The
goal in the latter is to learn optimal actions from past experiences. The rest of this project
has this particularly at heart.

Reinforcement learning is a framework for solving reward-based problems. This field is
largely inspired by the natural way in which humans and animals learn to perform various
duties without an instructing figure, i.e by interacting with the environment. Mathemati-
cally, this framework can be describe as will be done in what follows.

Let S be a set of states, and (st), t ∈ {0, 1, ·, T − 1} be a sequence of states. If it is true
that

P(sT+1|sT ) = P(sT+1|s0, s1, · · · , sT )

then we say that the sequence of states satisfies the Markov property. We shall always
assume that the probability of transitions is independent of the time variable. The transition
probability matrix denoted Pss′ is defined as P(st+1 = s′|st = s). Furthermore, we define a
Markov Decision Process as a tuple (S,A,P, γ, R) where respectively the elements represent
a finite set of states, a finite set of actions, the state transition probability matrix
Pass′ = P(st+1 = s′|st = s, at = a), the discount factor–this takes a value in the unit interval
– as well as a reward function from S × A × S to R. All of the mentioned facts are used
to model the environment in reinforcement learning. We see that in the Markov Decision
Process transitions between states depend on both the current state at a given time as well
as the action taken at that time from the state, and there is an associated reward to all
state-action pairs.

The goal is to find a way to maximise some defined expected return. A return Gt can be
defined as the total discounted reward from time t. We write

Gt =
∞∑
k=1

γkRt+k+1.

The discount factor is introduced for various reasons including the uncertainty handling
concerning future rewards, to avoid infinite returns in cyclic processes, to handle various
contexts where, for instance, states close to some current state have a different worth com-
pared to those that are farther.

We define a policy as a distribution over actions given states. We denote this as π(a|s) =
P(at|st = s). A policy serves the role of a guide for choosing actions given states. The goal
is to then find a policy that maximises the return, we call this the optimal policy. In order
to do this we define value functions as follows.
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The state value function, vπ, for a Markov Decision Process is the expected return with s
as a starting point, then following some policy π, that is vπ(s) = Eπ(Gt|st = s). In fact,
with very little effort we can express this in terms of the immediate reward for a state st
and discounted value of successor state st+1 as

vπ = Eπ(Rt+1|st = s) + Eπ(γvπ(st+1)|st = s).

Define Ras = Eπ(Rt+1|st = s, at = a), then we obtain

vπ(s) =
∑
a∈A

π(a|s)
(
Ras + γ

∑
s′∈S
Pass′vπ(s′)

)
(1)

Proceeding similarly, we define a state-action-value function, qπ(s, a), as the expected return
from state s taking action a then following the policy. Explicitly, this is
qπ = Eπ(Gt|st = s, at = a), and we can similarly break this expression into parts that are
easier to make sense of intuitively as shown in what follows. We have that

qπ(s, a) = Eπ(Rt+1 + γqπ(st+1, at+1)|st = s, at = a).

Rewriting this we obtain qπ(s, a) = Ras + γ
∑
s′∈S Pass′vπ(s′), and lastly, putting everything

together, using vπ(s) =
∑
a∈A π(a|s)qπ(s, a) , we write qπ in the same form as (1) to obtain

qπ(s, a) = Ras + γ
∑
s′∈S
Pass′

∑
a′∈A

π(a′|s′)qπ(s′, a′) (2)

The equations (1) and (2) are known as Bellman equations, and they are quite useful in
computing the value functions. The computations are done through a variety of meth-
ods including monte carlo methods, dynamic programming as well as temporal difference
learning.

When talking about optimal value policies, we are concerned with v∗(s) = maxπ vπ(s) as
well as q∗(s, a) = maxπ qπ(s, a) for all a ∈ A, s ∈ S. We say π ≥ π′ if for all s ∈ S we have
that vπ(s) ≥ vπ(s′). The optimal policy satisfies π∗ ≥ π in the set of all policies π.

In fact, given a Markov Decision Process we can be sure that there exists an optimal policy,
but this need not be unique, and all optimal policies achieve optimal value functions.

Having said all that we shall now give what is known as the Bellman optimality equa-
tions. Let π∗(a|s) = 1 if a = argmaxa∈Aq∗(s, a) and 0 otherwise, then we have v∗(s) =
maxa q∗(s, a), so that

v∗(s) = max
a

(
Ras + γ

∑
s′∈S
Pass′v∗(s′)

)
(3)

q∗(s, a) = Ras + γ
∑
s′∈S
Pass′

′max
a

q∗(s′, a′) (4)

These are key elements of the standard Reinforcement Learning formulation [1][9][8][26].

One has probably noticed that in the above we only focused on actions that would yield
the highest immediate reward for the derivation of the optimality equations. These are
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greedy actions. In fact, we need not do this. It is well-known that greedy methods are not
necessarily the best in solving problems, and a reasonable alternative is ε-greedy methods.
For this class of problem solving methods, we merely add a condition that for some ξ ∈ [0, 1]
chosen randomly, whenever ξ < ε choose a random move instead of the greedy one, and we
say that the agent is exploring the state space. As shown in [8] [16] this method is quite
useful in discovering more optimal policies.

The intermediate goal in this project is to present a simple but effective algorithm for finding
an optimal epsilon for ε-greedy implementations. It is worth noting that the process for
searching for any hyper-parameter is similar.
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The Learning Framework

The goal for this section is to merely provide a few definitions, justify why they are rea-
sonable constraints and prove a few propositions. The reader will hopefully be convinced if
not after this section then on upcoming sections that all the assumptions we make are not
too restrictive.
Definition 1 (Ordered Sets) Let P be a set. An order (or partial order) on P is a binary
operation ≤ on P such that for all x, y, z ∈ P :
1. x ≤ x; 2. x ≤ y and y ≤ x imply x = y; 3. x ≤ y and y ≤ z imply x ≤ z.

This definition is as found on [12]. It would seem like orders can be applied on numerical
contexts only but this is far from true. Given any context we can apply an order on related
concepts, and this is what we shall do below. A brief introduction of how lattice and order
theory can be used in general contexts is given on appendix A. The theory is inspired by the
already mentioned resource. We hope that this will convince the reader that this setting is
fitting for our purposes.

Definition 2 (Well-Posed Problems) Let P be a problem. P is well-posed if it is solvable, i.e
there exists a solution to the problem. Moreover, we assume that there is a unique solution
to problems in consideration.

The second part of this definition, uniqueness, means that we assume that the solution
space is ordered in the sense of the definition, i.e if there are two solutions Q,Q′, then
we can define an order on the solution space so that either Q ≤ Q′ or Q ≥ Q′ where the
former means that Q′ is more optimal, and does not exclude equality where appropriate.
This assumption is reasonable in the sense that, if we have multiple optimal solutions then
we effectively have a smaller search space, so the problem is slightly easier in comparison.
There are solution spaces where this structure does not hold, i.e where there is not one
optimality, and so we obtain for instance objects whose underlying structure is a partially
ordered set, (P,≤), without an element t such that for all t ≥ x for all x ∈ P . Such an
element t is called a top element. Usually, instead of this we have maximal elements, i.e
s ∈ P such that x ≥ s implies that x = s for all x ∈ P . These elements are not comparable
with each other if there is more than one, hence we cannot say which one is preferable
without context. This would be the more general structure we would want, but in order to
simplify things we consider the case where we have a top element, at least on a local scale.

Let P be a problem whose framework involves a finite number of states and a finite set of
appropriate actions. Suppose for each state there are at most n possible actions, and that
the sequence-term ((χ(P ))k,j is the outcome from taking some action given the k− 1 state,
for the j-th training trial.

Definition 3 Suppose that given a problem P we can employ a algorithm χ to obtain
χ(P ) = Q, the solution. In particular, we consider X(P ) as a sequence of states and
actions (on these states) that ultimately achieve Q. Let Q∗ be the optimal solution. If there
exists, ρ, a monotone decreasing function to zero such that:
1. ρ→ 0 ⇐⇒ χ(P )→ Q∗,
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2. If Y is set of tuples (s, a), the states already visited as well as the actions taken on those
states, then ρk,j < ρk−1,m ⇐⇒ for ((χ(P ))k,j , ((χ(P ))k−1,m with m ≤ j we have that
(sk, ak) /∈ Y,
then we call χ a learning algorithm.

We are using this definition as a necessary condition, and we do not claim it is sufficient.
The monotonically decreasing function is uncertainty about the environment with respect to
the duties to be fulfilled. In this view, all non-trivial moves decrease uncertainty about the
environment. It is clear that the definition above is essentially an order on the experience
of the agent.

Consider a learning problem, P , that is solvable for some ε ≥ 0 (i.e we consider a problem
that can be solved using a learning algorithm in an epsilon greedy sense) with, say, Q as
the solution. We claim that it is always possible to find an ε′ ∈ [0, 1] such that there is a
Q′ for which Q ≤ Q′.
Proposition 1 There exists an epsilon that improves learning for any well-posed learning
problem.

Proof. The existence of a solution by assumption (say Q) implies that the problem can be
solved by some ε ≥ 0. Consider a second solution to the problem, Q′ with ε′. If Q ≤ Q′,
let ε = ε′, otherwise ε = ε. If this process is finite, then all is well. Now, suppose there
is a sequence of progressively optimal solutions converging to Q∗, (Qk)k∈N, then we have
a sequence of epsilons (εk)k∈N. It is sufficient to note that since (∀δ > 0)(∃N ∈ N)(k ≥
N)(|Q∗ −Qk| < δ), we can merely take εk.

In fact, the existence of an epsilon for Q∗ then follows from the following theorem.
Theorem 1 ([15], Theorem 3.7) The set of all subsequential limits of a sequence (pn) in a
metric space X is a closed subset of X.

In order to see this, we only have to realise the sequence of solutions as a sequence of
limit points of convergent subsequences, then we can conclude given the assumption of the
existence of a globally optimal solution.
Corollary 1 Let P be a solvable problem, then Z, the set of possible solutions, with the
assumptions already considered is a closed subset of (R, | · |).

The proof immediately follows from the theorem as well as the argument on the relevance
of the theorem to the arguments of the proposition. Another result which might be useful
is the following result in approximation theory is the following proposition,
Proposition 2 Consider a sequence of functions fk : X → R such that fk → f with
convergence in the Euclidean metric. If f̃k = fk except for x ∈ Ak ⊂ R such that |Ak|k→∞ →
0 , then f̃k → f .

Proof. We only have to note that the triangle inequality gives |f̃k−f | ≤ |f̃k−fk|+ |fk−f |,
so that |f̃k − f | → 0.

We consider the definition of convergence as it is in classical analysis literature, using the
metric space (R, |·|) unless stated otherwise, i.e. Consider a metric space (X, d) and (xn)n∈N
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be a sequence in X, then we say xn → x if

(∀ε > 0)(∃N ∈ N)(∀n ≥ N)(d(xn, x) < ε)

.

Related Literature

There is a lot of work related to this problem either in a direct sense or not, and we shall
mention a few. The paper [7] discusses the efficiency of random parameter searching as
compared to other alternatives. Similar ideas to the algorithm have been around for some
time, for instance [17] has the same objective as we do. On the other hand, [18] is much
closer to what we present although arguably more constrained in comparison, in addition to
not having theoretical justifications. The paper [3] offers a very captivating idea as well by
adding a penalising layer on neural network to penalise the learning, but the implementation
does get quite involved, and the same goes for [2] whose fruits grow from the same tree, etc.
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The Search for Optimal Parameters

At this point we wish to introduce an algorithm for finding optimal epsilon. We shall give a
brief description of how the algorithm works, then proceed to provide more formal argument
on why we expect convergence for this algorithm. Let’s introduce some notation for the
algorithm. Given some array R, R[−k] =: r−k for some k ∈ N denotes indexing from the
end of the array. We let P denote a problem whose solution is (or is approximated by) Q.
The function sgn(∇ε) is the sign function determined by the sign of ε̃∗− ε̃, i.e the difference
between the approximately optimal epsilon from the previous execution and the current
epsilon. We present the following algorithm in order to compute the optimal epsilon.

Algorithm 1: Epsilon-Greedy-Epsilons
1 Initialise some storage array, K.
2 repeat

Input: P,ε
3 Sweep the solution space until some approximate solution is found.

Output: Q
4 Store Q in some array, R. Store both Q and ε in K
5 Let (as real numbers) γ, δ,M,N > 0.
6 if |R| > 1 then
7 if r−1 > r−2 then
8 ε← ε+ β × sgn(∇ε)|r−1 − r−2| with β ∈ R≥O
9 else

10 if γ < Mε+ δ, M ∝ |r−1 − r−2| then
11 ε = random()
12 else
13 ε = ε

14 else
15 if γ < Nε then
16 ε = random()
17 else
18 ε = ε

19 until Ñ times;
20 Clear R

The idea is that in the beginning we allow and encourage the algorithm to explore epsilon
values, then as it gets more and more solutions whose efficiency measures are quite close
to each other, we want there to be less randomly chosen epsilons. Observe that the term
|r−1 − r−2| → 0 as the agent learns enough to find approximately optimal solutions, and
is equal to zero whenever the most recent approximations are equal, i.e r−1 = r−2. So
we obtain varied exploration rates whenever there are prevalent inconsistencies, then this
quiets down as the learning progresses. The ’quieting down’ is ensured by the fact that
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the problem is assumed to be solvable, and that we are using a learning algorithm in the
above context. It is easy to note that although we have kept more generality with regards
to the constants (for example, M,N, β) it is possible to have a similar process for this kind
of search, but it gets a bit tedious. If all else fails, one can simply do a random search for
the parameters, which has strong practical backing to be the best method of going about
this particular task. The weights N,M can be tuned so that exploration does occur often
or does not. The parameter β can be tuned similarly, and is effectively the learning rate.

Step (8), as can be seen, takes a lot of inspiration from the gradient update approach. The
update is towards the epsilon that yields a more optimal value. This is chosen as it is
the most natural candidate in the sense that we obtain the values by solving the objective
(P,Q) problem without further work requiring a lot of function evaluations. A natural
improvement to this algorithm would be to incorporate the Upper Confidence Bound Action
Selection [8]. Not only that, but we can compute dynamically to avoid keeping large arrays.
It is interesting to note that (8) is also quite close to evolutionary techniques [5], but of
course, the presented algorithm is designed to be faster in searching the space for a solution
following the explorative behaviour in addition to the perturbative search.

12



Convergence Theory

The convergence on the proposed algorithm relies heavily on the convergence of algorithm
used to solve the original problem, and we would now like to show that as long as we have
a convergent algorithm everything will work within expectation.
Proposition 3 If χ is a learning algorithm that converges with probability 1 greedily, then
it convergences in the epsilon greedy context.

Proof. Since χ(P ) = Q, we have a sequence (Qn)n∈N such that Qn → Q. Suppose ε ≥ 0, ξ ∈
[0, 1], and that χ̃(P, ρ) corresponds to the exploratory path.

χε(P, ρ) :=
{
χ(P, ρ) whenever ξ ≤ ε
χ̃(P, ρ) otherwise

We have that (∀ε > 0)(∃N ∈ N)(n ≥ N) =⇒ |Qn − Q| < ε, then there is a subsequence
(Qnk

) such that nk ≥ n. Consider nk ≥ j, then it follows that Qnk
→ Q as n → ∞, and

this is sufficient for conclusion since ρnk,j → 0 as j → ∞, hence χ(P )nk,j → Q′ where
Q′ ≥ Q.

It follows from proposition 1 then that we could obtain another convergent sequence that
improves the convergence. Another useful result from [15] is Theorem 3.6,
Theorem 2 ([15], Theorem 3.6) Every bounded sequence in Rk contains a convergent
subsequence.

The assumption of boundedness follows from the assumptions of existence and uniqueness
of solutions. This offers and alternative idea for the proof.

Suppose then that the algorithm that solves the original problem is convergent, call this χ.
Theorem 3 Algorithm 1 converges to an optimal epsilon (i.e an epsilon for which we get
Q∗).

Proof. We have that χ converges for any epsilon. If the process χ(P ) is finite, then we
have that K is finite, and by considering the order on the space of solutions we obtain the
desired result as done previously. In the limit t → ∞, ε will take all values on [0, 1] (∗).
So if the process if infinite, then suppose that there is exactly one such epsilon. Write for
some t = k ∈ N, εk = ε. Let rk := |ε∗ − εk|. It is clear that for t = j with j > k, if (7) is
true, then rj < rk. We observe that supk rk = 0, since otherwise there is a κ ∈ (0, 1] such
that κ ≤ rk∀k ∈ N, so that ε /∈ Bκ(ε∗), contradicting (∗). Hence we obtain a sequence of
decreasing rk-radius balls around ε∗, and from this we obtain a sequence (εk)∞k such that
εk → ε∗.

If the epsilon is not unique, then again we have a better chance of converging to an epsilon.
In fact, although the algorithm itself might not converge in this case it will cycle through
the epsilons, and because all of them are optimal this still achieves the desired result.
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We can also note the following. If there is a sequence of problems, (Pk)∞k=1 such that
Pk → P , and we have an algorithm χ as in the above context such that we not only know
χ(Pi) for all i ∈ N, but we also know χ(P ). Then it is interesting to ask whether or not we
would ordinarily expect χ(Pk)

k→∞−→ χ(P ).

In order to answer this, we need to know precisely what this means. We would essentially
have that

(∀ε > 0)(∃δ > 0)(|Pk − P | < δ) =⇒ (|χ(Pn)− χ(P )| < ε)

This is exactly the definition of continuity of maps. This is not related to what we would
like to achieve, so we shall not be spending time on it, but is nonetheless worth mentioning.
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Introduction to Grid World

We would now like to put the algorithm to practice, and we choose to do this in the Grid
World setting. Grid World is an environment where there is a 2D grid, and the agent
has to learn the optimal way to traverse the grid to some cell, say (i, j) from (p, k) where
we are labelling the cells as coordinates in the usual sense. We consider the simple case
where the agent starts at a point (0, 0) on the grid and finds an optimal policy to the point
(N − 1, N − 1). For instance, we can consider the grid world without any obstacles whose
size is N = 5, and we obtain the following plots

(a) State Action Value Plot

(b) Greedy Moves

Figure 1: Example: N = 5

We initialise the environment as well as the agent, and the agent is penalised for staying in
one place, as well as for being in any state that is not terminal. This encourages the agent
to move in order to minimise the loss. Figure 1 (a) is a plot of the grid showing how this
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loss decreases as the agent traverses the grid towards the terminal state. The other plot
figure 1 (b) shows possible optimal routes from the initial states. It is important to note
that these are not hard-coded but rather the agent explores and discovers these paths.

Next we generate a few obstacles (denoted by black cells) on the grids, and we do this
randomly keeping the grid size fixed. In doing so we obtain the following sample grids using
N = 10. In fact, this is the type of data used in the rest of this project.

(a) Random Grid I (b) Random Grid II

(c) Random Grid III (d) Random Grid IV

Figure 2: More Generated Random Grids for N = 10
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Learning on Grids

In the first section, we mentioned methods for computing the value functions amongst
which were monte carlo methods, dynamic programming and temporal difference learning.
Dynamic programming algorithms are used to compute optimal policies given a perfect
model like a Markov Decision Process. This assumption, of course, limits the power of
applicability. Monte carlo methods are used similarly, but they only require experience,
and learning is an inference process based on average sample states, actions and returns.
This is a more robust method. Temporal difference learning is a generalisation of these
two methods wherein instead of, for instance, waiting until the return following the visit
is known then using that return as a target on updates, we need only wait until the next
step for temporal difference learning. Like dynamic programming methods temporal differ-
ence methods bootstrap, and so once can see that temporal difference methods have useful
properties derived from monte carlo methods as well as dynamic programming methods.
An example of such is TD(0), and we provide the algorithm above.
In terms of notation, we can read V (S) as vπ(st) in our usual notation. This is also known

Figure 3: TD(0) [8]

as one-step temporal difference learning, because it is an special case of a more general al-
gorithm that uses n−step returns for updates, and this can be see from the update equation
of the method being

vπ(st)← vπ(st) + α[Rt+1 + γvπ(st+1)− vπ(st)] (5)

where vπ(st) is the estimated value function at st.

We now have an idea of how the ideas in the background section are implemented to find
the value functions, and so we proceed to show how we find the policy. There are two
cases to consider here namely on-policy and off-policy learning. The on-policy approach
learns action values not for the optimal policy but for an approximately optimal policy
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that still explores. This is some sort of a compromise. If we use two policies where one is
exploratory while the other is being learned about and becomes optimal, then learning is
achieved through this exploratory policy which is often referred to as a behaviour policy,
and using this some target policy is achieved. Off policies are usually slower to converge
while offering more varied experiences, and thus rewards, but they are more general. In
fact, on-policy methods are a special case where the target policy and behaviour policy are
the same. However, given an on-policy method we can iterate greedily over the achieved
policy obtain to attain the same optimality.

For this project, we use an on-policy algorithm known as Sarsa on the temporal difference
setting as well as policy iteration to make policies optimal. We give the algorithm below.
In what follows α is called a learning rate, and this is merely a scaling of the update.

Figure 4: SARSA [8]

In producing the plots that we have seen so far, we used exactly these algorithms. Let n
be the number of training trials on the grids. We set the parameters as follows.

Parameter Values
γ 0.99
α 0.35
n 125

After this, we then we plotted the state-action values as can be seen on the images with
colour mapping together with the greedy paths as can be seen in the first two plots on
the previous section. In everything that follows from this point, we shall use these values
exactly unless stated otherwise.
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Grid Size and Computational Complexity

As one would expect, increasing the grid size leads to more computations, and as a result
the rest of this project uses N = 4 for grid size unless otherwise stated. In order to quantify
the computational cost we note that given a N ×N grid, the optimal policy π∗ has length
|π∗| = 2N , so for any other policy π we have that |π| ≥ |π∗| (or π∗ ≥ π). Moreover we have(

2N
N

)
= (2N)!
N !(N !)

ways of traversing the grid efficiently, because essentially N+N steps towards the right and
down in any order are required in order to solve the problem. The paper [10] deals with the
problem of finding the number of self-avoiding walks between arbitrary points on a given
grid of size N . This turns out to be a hard problem. They optimize an existing algorithm
in order to compute the number of paths for N = 25 a number after which convergence
takes a very long time.

Let Ω =
(

2N
N

)
× 2N . This is the possible number of states given the different ways of

solving the problem efficiently. Taylor series analysis, thanks to Wolfram Alpha, yields that

Ω
2N =

(
2N
N

)
∼
(√1/N√

π
−

(
1/N

) 3
2

8
√
π

+O

(( 1
N

)2))
exp

(
log(4)N +O

(( 1
N

)3))
(6)

We give a plot to give some sense of fast this number grows in Figure 5.

Figure 5: Visualising the Growth of Ω/2N

This growth is exactly what we see in the Taylor series expression. In particular, the
logarithm has predominantly linear behaviour, which implies that the object Ω/2N grows
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exponentially. We care about this because we need to generate a significantly huge number
of trials, and the plots in some sense give us the minimum number of computations required
to have approximately fully explored the space of solutions of interest. In order to generate
training data then, a few quality samples would take a lot of time to produce for large N ,
and this is simply inefficient far more than is desirable. An appendix, B, with more details
on the asymptotic analysis is available.
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A Short Investigation into Grid Orders

In the context of ordered sets, we would like to define some notion of order in the space of
modified grids. We want to answer the following question: Given two grids of size N , say
G, G′ which have respectively k, l obstacles where k, l ∈ N and k, l ≥ 0, what are reasonable
ways to put an order on the ’complexity’ of the grids?

In other words, we want to be able to say that, for instance, in G the agent will find the
optimal path more easily than in G′ given any two grids G,G′. It is clear that putting
obstacles in some grid makes some paths obsolete. It is interesting to note how this affects
the time it takes to find the optimal path. A brute force approach to the problem is
to consider constructing many random scenerios and use the average experience to draw
conclusions, otherwise we might try to see how the connectedness of the grid-structure
relates to the average time it takes to find the optimal path. This is of interest because
it affords us better understanding of the problem. A handful of different methods were
investigated, but we only present the mentioned two. The procedure for investigating the
rest was done similarly.

Random Walks on Graph

Consider a random walk X on a grid. A random walk is a path traced by an agent starting
at some initial state and selecting an action from the list of available actions randomly, i.e
at every time step t we assume that there is uniform preference of all available actions, and
one is selected randomly. If we consider a random walk over a finite grid, in the limit as
time t goes to infinity, we obtain a nonzero probability that all states will be explored after
time τ where this has to be at least 2N where N is the size of the grid. If N , the grid size,
is large then so is τ . A practical way of answering the question posed is to find the average
time it takes for a random walk to hit the states of interest, i.e we want the number of
steps it takes on average for the random walk to go from some initial state to the state of
interest. This method is more robust, because it involves computing the quantity of interest
directly from the grids in the same spirit that an agent will when it is still learning in its
environment.

Graph Connectivity

A graph is a pair (V,E) where ∅ 6= V is the set of vertices/nodes and E is the set of edges
between the vertices. A grid can be visualised as a graph with very little work where the
nodes are the states, and the edges a representative of paths between the cells. For example,
consider the following,

1,11,21,31,4
2,12,22,32,4
3,13,23,33,4
4,14,24,34,4

(7)
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The entries in the grid are the coordinates of the cells, i.e each cell is associated with a
pair of numbers k, j and we write (k, j). The graph representation can be realised in the
following way.

• Start at, say, (n, n′).

• Consider the possible states with effective moves, i.e moves that are towards the target
cell.

• Construct edges from (n, n′) to (a, b), (c, d) from above, then repeat for each of these
new states until you have the desired terminal state.

As an example using the above grid, from (cell) (1, 1), if you are moving to (4, 4), then
effective moves will lead to (1, 2) and (2, 1). From here we observe that from (1, 2) we can
move to (1, 3) or (2, 2) and from (2, 1) we can move to (3, 1) or (2, 2). Proceeding this
way, we obtain a grid representation. Although we only speak of effective moves, we do
not put direction to the edges. Considering all possible states, we also obtain the same
representation, but it gets messy too quickly. Starting at cell (1, 1) to cell (4, 4) produces a
graph representation that is exactly like the grid itself.

We say that a graph is connected if between any two vertices there is an edge from one
vertex to the other. Otherwise, the graph is disconnected. If G is a graph S is a set of
vertices of G. If G is connected and G\S is disconnected then S is said to be a vertex-cut.
A graph G is said to be complete if every edge is connected to all the other edges, and
incomplete otherwise. Given a connected graph G we define the connectivity as

κ(G) =
{

min |S| : S is a vertex-cut of G, if G is not complete
n− 1, otherwise

Loosely speaking, connectivity is the minimum number of vertices you have to remove in
order to disconnect a given graph structure.

A Brief Contextual Discussion

There are two observations that one can make easily. If a graph G is more connected than
G′ then there are most likely more ways of going from one vertex to another. This would be
a good thing if the agent would take good moves from the start, then the movement would
be towards the desired cell and any path taken would lead to a win. The price to pay is
that initially, the agent is learning and this means that it does not take good moves only.
The curse of having more paths to take is that there are more ways of getting lost. We want
to investigate how this affects the expected time taken to hit the terminal state.

Hence, we do the investigation as follows:

• Given a graph G. Compute the number average time it takes a random walk to hit
the states of interest, τ , and the connectivity of the graph.

• Given a second graph G′, we do the same.
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• After generating a sufficiently big number of different graphs we investigate the rela-
tionship between the τ ’s and the connectivities.

Numerical Implementation of Methods

As mentioned above, the grid variation procedure for our context involves putting obstacles
on the cells. This is essentially taking out vertices on the graph. In this section, we
generate grids whose order we compute using these two methods and we discuss whether or
not the results are reasonable. We specifically choose variations that are simple, but give
us an important pitfall of the connectivity approach. We had no apriori knowledge that
a variation like this would fail, and it came up in the testing, but instead of presenting
all the variations that work, we offer the simple case that fails. In this variation, first we
have a grid with no obstacles, then we put an obstacle at (1, 1). After this, for the next
grid we consider an obstacle with cells (1, 1), (1, 2), (2, 1), (2, 2). Note that we can describe
this as a block with diagonal elements (1, 1), (2, 2). We proceed similarly to add a block
with diagonal elements (1, 1), (2, 2), (3, 3), then continue until we have an embedded a block
of obstacles whose diagonal is (1, 1), · · · , (N − 2, N − 2). The agent starts at (0, 0) and
attempts to find a way to the cell (N − 1, N − 1). Figure 8 shows subplots that illustrate
this process for N = 10.

We obtain figure 6 when plotting the average time it takes to hit the terminal state (the
hitting time) against the sequence of variations seen above in the same order. Computing
the connectivity of the graphs using the Networkx library on Python, we obtain figure 7.This
is not very surprising, but at the same time shows that although the idea seems practical
and attractive, it breaks down quite easily with very simple graph structures, which in this
case is the particular variation of grids.

Figure 6: Hitting times with Complexity

It is easy to see that removing the nodes that represent the cells (0, 1), (0, 1), i.e the cells
right after the initial cell (0, 0) is sufficient to disconnect the graph structure. We can do
this for any of the corners, and this turns out to be the best we can do, and we can’t
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Figure 7: Connectivity with Complexity

disconnect the graph by only removing one vertex. So connectivity does not quite work as
a result, because it is not sensitive enough to the deformations we are considering. Hence,
although there would have been many exciting things to consider had it worked we have
to abandon the idea. There are other alternatives to consider, of course, for instance we
could consider the different paths that emanate from the initial cell of interest to the desired
terminal state. This should clearly be a more sensitive number to the variations in question
than the general connectivity of the graph, but it did not improve the speed in any way, so
we do not consider it.

Conclusion

The goal was to impose an order for grid complexity in the context of Reinforcement Learn-
ing. We considered two methods for this report that both seemed reasonable–a monte-carlo
approach (based on the idea of diffusion) as well as a graph theoretic approach. In the
end, we did experiments to see which method works best. The monte-carlo approach works
best. It is more sensitive to changes in graph structure. We chose to use the monte-carlo
approach in the context of random walks on graphs for the progress of the research project.
Hence, the ordering needed is pursued using this method and all analysis, where needed, is
done on the context of random walks on graphs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: A Sample of Generated Variations for the Numerical Experiment
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Epsilons on Grids

At this stage we would like to discuss how Algorithm 1 was used to compute the optimal
epsilon in the Grid World setting. The procedure was as follows.

• Generate a random grid and check that it contains the initial state, final state and
that the final state is a descendent of the initial state, i.e there is a path between
them.

• We applied first step temporal difference learning to a particular grid, then used policy
iteration to obtain optimal value functions.

• After this, we ran through different epsilon values according to Algorithm 1, and the
update condition was having the final the value functions within some tolerance from
the optimal values after a fixed number of computations.

• The epsilons were then updated according to Algorithm 1, fed back into the algorithm,
and then this process would repeat for a selected number of iterations.

• After this number of iterations, generate another different grid and continue until
some number of grids is achieved or a certain number of iterations is achieved without
finding new grids.

Grid Search

Generating grids for N = 4 in particular lead to an unreasonably large search space. Instead
of attempting to find a closed form for the expected number of variations, which turns out
to be a very hard problem, we do a search as hinted above. We run an algorithm to generate
random obstacles, discard all graphs where there is no path between nodes of interests, and
we do this for as long as we do not get a period where the number of elements we have
generated has remained the same for more than 1000 iterations. This is not a very efficient
bound, but it is slightly reassuring in its magnitude though it is also true that we might be
missing some samples. Figure 9 (a) shows the number of grids as a function of iterations

Epsilons on Ordered Grid Variations

Figure 9 (b) shows the variations arranged in ascending order as done before, with the opti-
mal epsilon plotted accordingly for each grid variations. The complexity axis is normalised
so that the sum of the discrete values is 1. It is interesting to note that there is a discrete
spectrum of complexities for a given graph size. The worst and best cases can be thought
of as in the previous short investigation on grid ordering.
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(a) (b)

Figure 9: Grid Search and Optimal Epsilons on Grid Variations

Bounds on Agent Experiences

The most extreme behaviour is observed when ε = 1 which is the random walk. The other
experiences are less erratic, and we can in fact think of the mentioned case as an upper
bound of behaviours, so that if we understand it then everything that falls beneath ε = 1
will also be understood to some degree. At the very least we will have quantified measures
that bound the extreme cases, and this is the goal of this subsection. Consider the following
graph.

q0start qi qa

qb

qd

qc
i j

a

b

cd

e

Figure 10: State Diagram, G

Observe that this graph has an initial state q0 which is then followed by states qa, qb, qc, qd.
It is interesting to compare the expected time it would take a random walk to reach some
nodes from selected starting points. This is known as the hitting time from the initial state
to the terminal state, i.e if i, j are nodes then the access time or hitting time from i→ j is
the expected number of steps before node j is visited, starting from node i [13].

For example, does it take the same time for a random walk to move from q0 → qa as it
takes to move from qa → qe? It turns out this is not true. The paper above has general
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results together with [11], and we present a few special cases. In what follows, G\{s} is G
with the state s removed together with edges that are incident on the state.

Graph Types Hitting Times
G\{qb, qd, qe} The hitting time from q0 → qa is 32

G\{q0, qi} The hitting time from qa → qc is 2(4− 2)
G\{q0, qc} The hitting time from qi → qd is 1 + 2(3)− 1
G\{q0, qd, qc} The hitting time from qa → qb is 32 − 12

It is relatively easy to see that for any pair of nodes we consider it is possible to find the
hitting time by considering a linear combination of the tabulated results. This gives us some
understanding of the structures that lead to a greater hitting time as the agent traverses
from the initial state to the terminal state. This links very closely to behaviour we already
observed in the investigation of the grid ordering methods, but we have to be careful about
how we model behaviour along a bigger graph. Roughly speaking, there are two points to
take home from this:

• Cycles make learning easier, i.e we expect less time for the agent to explore all the
space.

• Numerous smaller cycles are preferred to a few big cycles.

• Hitting times on trees structures are often bounded below by hitting times on cycles
and above by hitting times on line graphs.

Comments Epsilon Behaviour

It is apparent from figure 9 that the epsilon value that is optimal is nearly constant for all
grid variations given that they lie in a very narrow band of the unit interval. This might be
surprising to some, and although we developed no rigorous argument as to why this should
be the case, when one considers what’s actually happening it seems plausible that this is
the case. This behaviour is because we put obstacles along paths, which is not equivalent
to putting cliffs. That is, in generating the variations we merely sever some paths as well as
possible states by restricting access to these, which is different from allowing the agent to
have access to these then imposing heavy penalties for moving into such states. The former
allows exploration, but discourages a lot of it, while the latter can either weaken or enhance
this effect depending on the context. Thus the latter would most likely have more influence
in discouraging exploration than that former, and so it makes sense that all grids have very
close reasonable values. This is one of the things we would like to make more precise, or at
least study numerically, in the future.

Ideas on Generalising the Methods

Suppose now we ask more ambitious questions about the structure of learning elements
in general, i.e elements of a learning architecture. Suppose for instance we have a neural
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network, and we wish to use dropout [24]–for say a recurrent neural network [23]. Generally,
implementations usually use some ad-hoc value and hope it works. Otherwise, a brute force
comparison technique would suffice. This is a very tedius task, and we find that with some
contextual modifications we achieve a method to find an approximation of the efficient
dropout percentage.

Generally, we adopt the frame work of the first section wherein we discussed the assumptions
on solvability of problems as well as the definition of learning algorithms. Then we require
instead of an epsilon we consider some learning element G. The assumption is that this
is related to the structure of the network. We suppose that there is a set Ω of relevant
variations of G, or possible forms. For instance, Ω = [0, 1] in the case for epsilon. We
hypothesize that the rest of the results we had are then implied from this, but we shall
not spend much time on this. It is also clear that for parameter searching the method is
competitive, since it has the random search property which has been numerically show to
be the best method for finding parameters efficiently.
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Introduction to Neural Networks

Artificial Neural Networks, usually just referred to as Neural Networks when the context
is clear, can be thought as computational models whose working mechanism is largely
inspired by the human and animal neurophysiology, i.e how our brains are built, and how
they process information. The human brain has billions of neurons connected together by
synapses. If sufficient synaptic inputs fire to a neuron, that neuron will also fire. This
process is often called “thinking”. With artificial neural networks, we emulate this process
by creating a neural network on a computer.

Neurons are building blocks of neural network. A neural network has input and output
neurons, which are connected by weighted synapses. The weights affect how much of the
forward propagation goes through the neural network. We think of the signal incident on
the neural as some projection from the input space. For example, the following.

Input

x1

x2

x3

x4

Projection

sum

Output

hw,b(x)

Figure 11: An Example of an Active Neuron

The elements (xi)4
i=1 are inputs to a neuron , the output is hw,b(x) where the b is some

associated bias and w denotes the weights. In fact, we can alter this slightly to make it
more representative of the bigger picture.

x1 w1

x2 w2 Σ fact

Activation
function

yout

Output

x3 w3

Weights

Bias
b

30



The activation function aids the learning. It turns out that feeding the output of a neural
to a well-chosen class of functions that we call activation functions improves learning. The
weights can adjusted during a process called back-propagation. During this process the
neural network is learning. Backward and forward propagation are done iteratively over
the training data set. Adding more neurons in a network improves performance very often.
We give a figure to illustrate how back propagation works.

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Back propagation

Figure 12: An Example of a Neural Network

When one builds a network, they have initialise weights. Back-propagation is a way of
communicating the error that results when the samples on the training set are passed
through the network such that the weights are adjusted in a way that ’learns’ whenever
mistakes are made, for instance if we have a classification problem, then whenever there
is a misclassification an error is propagated backwards and the weights are adjusted to
acknowledge the mistake.

We can add as many neurons as we want and as many layers as we have computational
power for. Adding more layers tends to increase the abstraction of details from training.
There are other known methods to aid the learning of neural networks such as drop out,
regularisation [21], etc. These are both methods to minimise overfitting for a given network.
Models that do not overfit tend to generalise well to unseen testing data, and that is why it
is important to avoid, or to at the very least reduce overfitting. Although we will be using
the mentioned methods in our architecture, we shall not provide any in-depth explanation
of how they work, but the cited resources should be sufficient.

31



Investigating Transfer Learning

In Gridworld, we have an agent whose task is to move from an initial state s0 to a terminal
state sT . The agent is expected to find an optimal solution by maximising a numerical
reward. Suppose we train a neural network to whenever given a grid, be able to estimate an
epsilon. There are a few simplifying assumptions, one of which we simply feed it the data
we generate from above. It is possible to have a network that given grid can create a map
of the grid including the obstacles, but this is at some resource cost on the scale of what we
have already discussed with grid size computations if not more. Instead of requiring that
we stop at simply training and observing accuracy, we want to study the transferability of
learning in the following context.

Consider a N ×N grid and consider a function Lσ that learns some parameter of interest
from whatever problem we are attempting to solve, for example ε in the discussion above.
Suppose we have a variety of structures as we saw above, and for each we want to find this
parameter. We can treat this as a classification problem, i.e we consider inputs in Rd and
transformation σ to the feature space Rd from which we can define another transformation
L to an element of the classification space, so that the objective is learning an optimal way
of defining a transformation Lσ : Rd → R [6].

Suppose that we have a mapping φ : N × N → M ×M where N ≤ M , and suppose that
φ is an isometry, i.e the points in the N × N grid to a grid of size (N + 1) × (N + 1) in
a way that preserves distances between the points. We then ask the question: Is there an
embedding that will ensure the highest level of transferability of knowledge from training?
That is, is there an embedding scheme such that whenever we use the neural network to
predict a parameter we obtain a reasonable estimate?

As an example, S := N ×N such that Sij = (i, j) and similarly S′ = N + 1 ×N + 1. An
example of an embedding is

φij =
{
Sij if i, j ≤ N
S′ij otherwise

Otherwise, we can translate this embedding along the bigger grid to cover all space, i.e
consider φi(j+1), φ(i+1)j , etc. It is worth investigating then if it matters how exactly we
embed S into S′. This will be the theme of the rest of the project.

In what follows, we introduce a neural network architecture, and then we proceed to report
test results after training. After this, we shall put the model to the test in hopes to answer
the question about optimal embedding schemes.

We construct a neural network whose inputs are grids, passed through as arrays with zeros
except where there is an obstacle, and the outputs are scalars on the unit interval of the
real line. We give the structure of the network on the next page.
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The Neural Network Architecture

The network was built on Python using Keras. The number of layers is kept low together
with parameters as can be seen on 13, because the problem at hand does not involve high
level detail that for instance facial recognition would. However, we ensure that the structure
can handle abstraction, and not merely fit the noise in the training data by choosing the
architecture through a process of careful trial and error as well as observation of training
statistics.

Dense layer with
16 parameters,

relu as the
activation

function, L2(0.01)
regularisation

Dense layer with
32 parameters,

relu as the
activation

function, L2(0.01)
regularisation

Dense layer with
16 parameters,

relu as the
activation

function, L2(0.01)
regularisation

Dense layer with
64 parameters,

relu as the
activation

function, L2(0.01)
regularisation

Dense layer with
1 output, sigmoid
as the activation

function, L2(0.01)
regularisation

Figure 13: The Neural Network used for the Investigation

We use dropout(0.2) in between all layers, the optimiser is adam, the loss function is based
on the mean square error and the metrics are the mean square error as well as the mean
absolute error.
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Training Statistics

The training data is of the form of what is shown on figure 9 (b). We inject some random
noise on the values of epsilon to reduce overfitting on each of values. This increases pre-
dicting power of the network by a factor of 10−1. We partition the data we generated into
training, validation and testing data sets, and upon training we obtain the loss statistics
on figure 14. It is worth noting that usually it is the case that the validation loss is greater
than the training loss, but the use of regularisation and dropout can lead to the opposite
effect, which is what we observe in the figures below.

Figure 14: Statistics of the Loss during Training

We tune down the precision to reduce overfitting. We do this by truncating the training
after some reasonable accuracy is obtained, and for this we choose 90%. We obtain the
following.

Figure 15: Truncation of Training Time to Reduce Overfitting Effects
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Performance Evaluation

Evaluations on known Data

We observe the following behaviour when we predict the values obtained on figure 9 (b).

Figure 16: Prediction of Epsilons for the Elements of Figure 8

It seems as if the network finds a value that minimises the error of prediction. Moreover,
we find that this strategy for predicting values leads to very low relative errors. However,
we could also be seeing patters of overfitting. Figure 17 shows that the magnitude of the
relative error of all predictions is bounded above by 0.100, which is a reasonable bound.

Figure 17: Optimal Epsilon and Relative Error Magnitudes for Predictions
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Transfer Learning

Recall the embedding introduced recently, φ.

φij =
{
Sij if i, j ≤ N
S′ij otherwise

We consider cases: φij , φ(i+1)j , φi(j+1), φ(i+1)(j+1) and we shall refer to them respectively as
the natural embedding, the row translation, the column translation and the row and column
embedding for obvious reasons given the notation.

In what follows, the following has been done:

• We select elements randomly from the testing data set.

• We create 4 classes using the isometries by taking each randomly generated element
and applying all 4 transformations on the element.

• The ε is explicitly computed for each element in all the 4 classes.

• After this, the neural network model is used to predict the ε for each of the elements.

• Then we compare the difference between the predicted value as well as the value that
is explicitly computed.

We obtain the following results:

Embedding Mean Error Uncertainty of Result
Natural Emedding 0.00070 0.00016
Row Translation 0.00069 0.00011
Column Translation 0.00076 0.00015
Row and Column Translation 0.00064 0.00011

Keeping in mind, this is an oversimplification of the outputs. Here there are a few things
to note:

• Translating both the row and column beats all of the other translations.

• The column translation gives the worst performance.

• Despite the differences, the error is still quite small, i.e of order 10−3.
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Conclusion

Our first goal was to develop a light algorithm that can find an optimal epsilon in the
epsilon greedy context. We achieved this goal, and we applied this algorithm to Grid World
wherein we found epsilons for different grid variations. Our second goal was to see how the
learning transfers to larger grids for small ones. We successfully built a neural network for
this task, and we observed how the error compares for different samples, as well as how the
error compares given different ways of embedding a small grid into a larger one. We find
that we can, to a reasonable degree, transfer learning done on smaller grids to larger ones,
and that it does not matter how exactly we do this act of embedding.
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Appendix A: Formal Concept Analysis

In the entirety of this document, we talk loosely about abstract problems and we put an
order on the space of solutions of problems of interest. In fact, there is a rich theory that
forms the basis of this approach as seen in [12]. This basis of this theory is essentially the
notion of context and concepts with order theory. In this part of the appendix, we shall
only give an exposition and it should be clear how this can be used to further formalise, as
well as generalise, the whole theory we have seen.
Definition 4 (Context) A context is a triple (G,M,I) where G,M are sets and I ⊆ G×M .
The elements of G and M are objects and attributes respectively.

We write gIm instead of (g,m) ∈ I and say the object g has attribute m. For A ⊆ G, B ⊆
M , define

A′ = {m ∈M |(∀g ∈ A)gIm}

B′ = {g ∈ G|(∀m ∈ B)gIm}

The concept of the context (G,M, I) is defined to be a part (A,B) where A ⊆ G, B ⊆M ,
A′ = B, B′ = A. The extent of the concept (A,B) is A while its intend is B.

The maps
φ : A→ A′

ψ : B → B′

are called polars of the relation I ⊆ G×M . The set of all concepts of the context (G,M, I)
is denoted B(G,M, I)

Let (G,M, I) be a context and consider (A1, B1), (A2, B2) ∈ B(G,M, I). We write (A1, B1) ≤
(A2, B2) if A1 ⊆ A2, and this implies A′1 ⊇ A′2 and the reverse implication is valid since
A′′1 = A1, A

′′
2 = A2, so that we obtain

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

It follows then that≤ is an order on B(G,M, I), and the book establishes that 〈B(G,M, I);≤
〉 is a concept lattice and it is complete with the following proposition.
Proposition 4 Let (G,M,I) be a context. Then 〈B(G,M, I);≤〉 is a complete lattice in
which the join and meet are given by

∨
j∈J

(Aj , Bj) =
(

( ∪
j∈J

Aj)′′, Bj
j∈J

)

∧
j∈J

(Aj , Bj) =
(
Aj
j∈J

, ( ∪
j∈J

Bj)′′
)

It is also true that any complete lattice L is isomorphic to a concept lattice B(L,L;≤). These
results collectively form what is known as the fundamental theorem of concept lattices. The
book further discusses a few practical examples of this theory.
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Appendix B: Approximate Bounds on Computational
Complexity

Analytic Derivations

We wish to study the behaviour of Ω
2n =

(
2n
n

)
as we saw it earlier, but instead of using

a Taylor Series expansion for functions in the forms of integrals –which would be a much
more messy route– we shall use Stirling’s approximations,

lnn! = n lnn− n+O(lnn).

Another form of this is,

n! ∼
√

2πn
(
n

e

)n

One of the proofs for these approximations can be found on [30].

(
2n
n

)
= 2n!

(n!)2

∼
√

2π(2n)
(2n
e

)2n
2πn

(
n
e

)2n
∼ 1√

πn
×
(2n
e

)2n
×
(
e

n

)2n

∼ 1√
πn
×
(2n
n

)2n

∼ 1√
πn

22n

∼ 22n
√
πn

(8)

It is easy to see the resemblence between this approximation as well as the one that was
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stated earlier, i.e

Ω
2n =

(
2n
n

)
=
(√1/n√

π
−

(
1/n

) 3
2

8
√
π

+O

(( 1
n

)2))
exp

(
nlog(4) +O

(( 1
n

)3))
∼ 1− 1/8n√

πn
exp(n log(4))

∼ 1− 1/n√
πn

exp(log 4n)

∼ 22n
√
πn

(9)

Numerical Tests

(a) Comparison with N=3 (b) Comparison with N=5

(c) Comparison with N=10 (d) Comparion with N=15

Figure 18: Comparison of Approximations

It is clear that the approximations show differences for low values of N but this difference
is rapidly reduced for values N ≥ 5, from which point the two methods essentially generate
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neighbouring sequences in the limit as n→∞. Hence although we introduced an asymptotic
expression on a trust basis earlier we have now derived its asymptotic behaviour (validity)
from known results. The plots visually demonstrate the convergence of the two forms
mentioned as well as the error.
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Appendix C: Implementation

For implementation, we considered the grid world first using SARSA as well as policy
iteration. The theory coming up as well as techniques on implementation would transfer
easily with algorithms like Q-Learning, generalised Temporal Difference Learning TD(λ),
etc. It is well known that SARSA converges from [20] and [29]. The author of [29] uses
the following Lemma 1 to prove the convergence, and the lemma often becomes exceedingly
useful for implementations where the numerical accuracy becomes a hurdle, in which case
one should consider both the convergence to a near optimal solution of the algorithm at a
particular time as well as the speed with which this is achieved. There are other interesting
papers on convergence such as [22]. At this point we wish to state the lemma from [29]
and argue the reasonableness of constraints on convergence rates. We state the lemma as
is found on [28].
Lemma 1 Consider a stochastic process (ζt,∆t, Ft) where ζt,∆t, Ft : X → R such that

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt)

where xt ∈ X and t = 0, 1, 2, · · · . Let Pt be a sequence of increasing σ-fields such that ζ0
and ∆0 are P0-measurable and ζt,∆t are Pt-measurable, t ≥ 1. Assume that the following
hold:

1) the set X is finite,

2) ζt(xt) ∈ [0, 1],
∑
t ζt(xt),

∑
t(ζt(xt))2 < ∞ with probability 1 and for all x 6= xt

ζt(x) = 0,

3) ||E{Ft|Pt}|| ≤ κ||∆t||+ ct with κ ∈ [0, 1) and ct converging with probability 1,

4) Var{Ft|Pt} ≤ K(1 + κ||∆t||)2, where K is some constant,

with || · || being the maximum norm. Then ∆t converges to zero with probability one.

The paper further elaborates on the idea of the using the lemma following that if we apply
it to the case where X = S × A, Pt{Q0, s0, a0, r0, s1, a1, · · · , st, at}, xt = (st, st), ζ(xt) =
αt(st, at) and ∆t(xt) = Qt(st, at)−Q∗(st, at). If ∆t converges with probability one, then we
obtain the convergence ofQ to an optimal value. It follows that ||∆t|| = maxs maxa |Qt(s, a)−
Q∗(s, a)|. It is clear then that the convergence of rate of ∆t to zero is the rate at which Q
converges to the optimal value, because

d||∆t||
dτ

= d

dτ

(
max
s

max
a
|Qt(s, a)−Q∗(s, a)|

)
using τ as a time unit. Given that the function approximations are quite close to each
other on some defined metric then it makes sense to consider the rate of convergence of
each approximation. This is clearly related to the number of function evaluations in the
algorithm that solves the original problem, which in our case is SARSA. It follows then that
an optimal epsilon is one for which we get the fastest convergence of the algorithm, and the
epsilon perturbations are done consider the rate of convergence instead.
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Lastly, although Proposition 3 ensures us that we do not have to worry about the conver-
gence of SARSA given different epsilons, a more rigorous approach to this problem can be
solved using inpsiration from [Policy Grad Methods for RL with function Approx R, Sutton
et al]. The following is the main theorem on the paper.
Theorem 4 Let π and fw be any differentiable function approximators for the policy and
value function respectively, where w is a parametrization of f , such that

∂fw(s, a)
∂w

= ∂π(s, a)
∂θ

1
π(s, a)

and for which maxθ,s,a,i,j |
∂2π(s, a)
∂i∂j

| < B <∞. Let (αk)k∈N be any step-size sequence such

that limk→∞αk = 0 and
∑
k αk = ∞. Then for any Markov Decision Process with boound

rewards, the sequence (ρ(πk))k∈N, defined by any θ0, πk = π(·, ·, θk), and

wk = w such that
∑
s

dπk(s)
∑
a

πk(s, a)[Qπk(s, a)− fw(s, a)]∂fw(s, a)
∂w

θk+1 = θk + αk
∑
s

dπk(s)
∑
a

∂πk(s, a)
∂θ

fwk
(s, a),

converges such that limk→∞
ρ(πk)
∂θ

= 0

Using this it can be shown, but this requires a bit more work, that we do not have to
worry about convergence given a varying range of epsilons. In particular, approximating
the function fw appropriately and showing that this approximation is reasonable in the
context of the paper. One could then use proposition 2 with a well-chosen approximation.
With that done, the proof follows falls out from the theorem.
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