
Applied Maths III projects
2019

No Plagiarism Declaration

(To be handed in with final Project Report)

Please note that without this declaration, your project will not be marked.

Declaration by student:

• I know that plagiarism is wrong. Plagiarism is to use
another’s work and to pretend that it is one’s own.

• Each significant contribution to, and quotation in,
this project from the work of other people has been
attributed, and has been cited and referenced.

• This report is my own work.

• I have not allowed, and will not allow, anyone to copy
my work with the intention of passing it off as his or
her own work.

Name:

Student number:

Signature:

Date:

Jeremy Du plessis
Jeremy du Plessis

Jeremy Du plessis
DPLJER001

Jeremy Du plessis
04/10/19

A Survey of Curiosity-Driven Reinforcement Learning

Jeremy du Plessis

DPLJER001

University of Cape Town

Department of Mathematics & Applied Mathematics

MAM3040W

Abstract

Reinforcement Learning is the sub-field of machine learning concerned with the study of learning

algorithms which enable decision making agents to learn an optimal mappings from states to actions inside an

environment in order to maximise a reward signal over time. In many real life scenarios the environment may

be reward-sparse and thus in order for an agent to learn effectively, the learning algorithm should incorporate a

mechanism which produces implicit rewards for exploratory behaviour. Although some theoretical foundations

had been laid for such algorithms in the 1990’s and early 2000’s, significant breakthroughs in application have

been experienced in the past five years. This report explores the development of curiosity-driven reinforcement

learning and examines the theory and application of the most successful algorithms to date.

1 Introduction

Reinforcement learning is one of the three main subsets of the broad field of machine learning, along with

Supervised and Unsupervised learning. A Reinforcement learning problem, abstractly speaking, is one that

involves a decision making agent that exists within an environment. In general, we imagine that both the agent

and the environment exist in a time continuum (as is the case with animals or autonomous robots in the real

world). However, in order to frame the problem in a way that is mathematically tractable we think of the

agent and the environment as stepping through time discretely. At each time step the environment is in some

well-defined state, the agent observes the state and then takes an action in the environment, where after the

environment responds in two ways; first, by changing or maintaining it’s state and second, by producing a

numerical reward signal, which is communicated to the agent, and may be positive (good), negative (bad) or

zero. The goal of the agent in all reinforcement learning problems is to maximise the reward signal from the

environment over time. A key point to note is that the agent is not explicitly aware of the dynamics of the

environment and thus it does not have any inherent knowledge about which action, or sequence of actions, will

produce the highest possible reward. Therefore the ultimate objective of all learning algorithms developed for

such problems is to enable the agent to learn, through interacting with the environment, a mapping from states to

1

actions that will yield the highest possible reward over time. Reinforcement learning thus distinguishes itself from

the other two principle sub-domains of machine learning in the following way. Unsupervised learning algorithms

are concerned with finding implicit structure and patterns in data without guidance from the programmer.

Supervised learning algorithms rely on labels to explicitly communicate to the computer whether or not a

classification is correct; we call this kind of learning instructive, since the computer is being told explicitly

what the correct classification is. Reinforcement learning algorithms on the other hand should be thought of

as evaluative, in that the decisions of the computer are not judged explicitly as ’right’ or ’wrong’, but rather

numerically evaluated by a single number, with no further information about whether or not any alternative

decision may have produced a higher or lower evaluation.

The field of Reinforcement learning originated as a result of two distinct areas of research: the study of

optimal control in Engineering, and the study of animal learning in Psychology [1]. The study of optimal control

is concerned with designing controllers for dynamical systems in order to maximise or minimise a certain measure

of the systems behaviour. The field provided some of the core mathematical ideas used in modern reinforcement

learning, including the notion of "optimal return functions", or value functions, and the Markov decision process,

a mathematical object which defines the discrete stochastic optimal control problem [1]. At a high level, however,

reinforcement learning problems are viewed mainly through the lens of animal learning; the fundamental concepts

of a decision making agent capable of learning through positive and negative reinforcement are concepts that

have deep roots in the field of psychology. Modelling learning algorithms on biological systems (e.g. neural

networks and the brain) is therefore a natural strategy for success, and a further inspiration for augmenting

learning algorithms was the idea of synthesising and embedding curiosity into the learning process. There

are several definitions of curiosity in the literature, but it can broadly be described as "the desire to seek out

novel information in the absence of a specific goal". In the early 1990’s, prominent Computer Scientist Jürgen

Schmidhuber proposed the idea that a mechanism simulating curiosity could be embedded into reinforcement

learning systems in order to produce exploratory behaviour in the absence of explicit rewards. In recent years the

development of curiosity-driven algorithms has lead to success on previously unsolvable problems and significantly

improved performance in existing learning algorithms. This report aims to summarise the development the

curiosity-driven reinforcement learning algorithms and give an overview of the recent developments which have

produced the most promising results thus far.

2 PART A: Theory

3 The Full Reinforcement Learning Problem

We will now layout the mathematical definition for the full reinforcement learning problem, which will thereafter

allow for exploration of the mathematical and algorithmic solutions to the problem, in particular those where

the concept of curiosity plays a major role.

3.1 The Agent-Environment Interface

As outlined above, the reinforcement learning problem consists of a decision making agent which exists within

the context of a dynamic environment. At each discrete time step t the environment is in a well defined state

2

st 2 S, where S is the set of all possible states for a given environment. The agent observes, either fully or

partially (as is most frequently the case), the state of the environment and must then choose an action at 2 A(s)

to perform, where A(s) is the set of all possible actions possible in a given state s. In order to decide which

action to take the agent consults it’s policy ⇡ : S ! A(s), which is, abstractly speaking a mapping from states

to possible actions. Practically speaking, an agents policy may be anything that takes in state information and

returns a single action in the case of a deterministic policy, or a distribution over possible actions in the case that

the policy is stochastic. The agent then executes the chosen action at, after which it will receive feedback from

the environment in the form of a numerical reward rt+1, which may be positive (good), negative (bad) or zero,

after moving to time step t+ 1. Simultaneously, the environment makes a transition from st to st+1. The state

transition may or may not be affected by the agents action in the previous time step. The loop shown in figure

1 summarizes what has been described by Richard Sutton and Andrew Barto in [1] as the agent-environment

interface, where we see that the reinforcement learning problem can essentially be distilled down to three signals

being passed back and forth between the environment and the agent: state, action and reward.

Figure 1: The agent-environment interface [1]

3.2 Rewards & Returns

The purpose of the numerical reward received by the agent at time t is to evaluate the agents action at given

state st. The reward signal is the principle focus of the reinforcement learning problem as defines the primary

goal of the agent, which is to maximise the return Rt, which is the cumulative reward over time following t. In

mathematically defining the cumulative reward over time we must consider two different categories of tasks in

which an agent may engage: the first category is one in which the tasks are finite in time, breaking up into

episodes, called episodic tasks. The second category are continuing tasks, which are tasks that, unsurprisingly,

continue indefinitely. In the case where the tasks are episodic we have the notion of a terminal state, which is

the final state of an episode. In order to maintain mathematical consistency we will force equivalence between

the representation of cumulative rewards for both types of tasks by defining the terminal state of an episode not

as the end of the episode, but as the state that transitions to itself recursively once it is reached, returning a

reward of zero each time [1]. A simple example of a continuing task and an episodic task are illustrated in figures

2 and 3 respectively. In the illustrated examples, the states are represented as nodes and the state transitions as

edges, with each transition from a non-terminal state yielding a reward of +1.

Figure 2: An example of a continuing task

3

Figure 3: An example of an episodic task

We can now define the return for both continuing and episodic tasks as

Rt = rt+1 + �rt+2 + �2rt+3 + ... =
1X

k=0

�krt+k+1, 0 � < 1, � 2 R

where � is called the discount rate, and ensures that the infinite sum converges to a finite value so long as the

reward sequence {rk} is bounded. Say r M , M 2 R for all possible values of r, then

Rt =
1X

k=0

�krt+k+1

M
1X

k=0

�k

=
M

1� �

Tuning the discount factor affects how the goal of the agent is defined (and thus how the agent will behave); if

� = 0 we call the agent "myopic", being concerned only with the immediate reward after each time step, and as

� ! 1 the agent becomes more farsighted, concerned less about immediate rewards and more about how future

rewards will be affected by current actions.

3.3 The Markov Property & Markov Decision Processes

An important point to emphasise about the relationship between the agent and the environment (in almost

all problems of importance in reinforcement learning) is that the agent has no explicit knowledge about the

rules that govern the dynamics of the environment. Indeed, if it did we would not have a learning problem, but

an optimisation problem as is the case in problems concerning optimal control and the solutions developed in

dynamic programming (not covered in this report). Instead, the agent must attempt to learn the best possible

actions to take under certain states through sampling - taking actions in the environment, observing its response

in terms of states and rewards and adapting its behaviour based off its experience. Since the agents choice of

actions is a function only of the state signal produced by the environment, a requirement of just about all modern

learning algorithms is the state signal to have (or at least approximate) the Markov Property [1]. Informally this

means that a state signal is required which summarizes past sensations in such a way that all relevant information

needed to make effective decisions is maintained. Formally, we define the Markov Property by considering how

the environment may respond at time t+ 1 to the action taken at time t. In the most general case the response

may depend on all states, actions and rewards from previous time steps. We treat the environment as stochastic,

and define the dynamics according to the complete probability distribution

P{st+1 = s0, rt+1 = r|at, st, rt, at�1, st�1, ..., r1, a0, s0}

4

which is true for all s0 and r and all possible preceding states, actions and rewards st, at, rt�1, st�1, at�1, ..., r1, s0, a0.

In the case the state signal at time t summarises compactly the past sensations experienced by the agent then

the following statement holds

P{st+1 = s0, rt+1 = r|at, st, rt, at�1, st�1, ..., r1, a0, s0} = P{st+1 = s0, rt+1 = r|at, st}

Which means that, given a state signal that is Markov (has the Markov property), one should be able to predict

all possible future states and rewards just as well regardless of whether the entire history of events or just the most

recent events are known. The majority of modern learning algorithms developed for solving the reinforcement

learning problem depend on the environment in question emitting a state signal which has the Markov Property,

or at least approximates it. A simple example of a state signal which would not have the Markov property would

be one where the state was a snapshot in time of a moving object, in this case we would be missing information

about the objects velocity and would be unable to make predictions without knowing the objects history in time

and space. We could then construct a Markov signal by creating a state signal out of, for example, the four

previous positions of the object in the four most recent time steps, granted small enough time delta.

If a reinforcement learning task consists of a state signal which has the Markov property, we may define it

as a Markov Decision Process (MDP). In the discrete case it is called a finite Markov Decision Process, and

although the methods examined later in the report are designed to handle continuous state spaces, representing

a reinforcement learning task as a discrete case is a useful tool for thinking about the problem in general. An

MDP is a mathematical structure that may be visualised as a directed graph with nodes and edges. The nodes

would represent states and the edges would represent state transitions, each having a transition probability and

reward associated with them. No restriction is placed on the value of rewards associated with the transitions in

an MDP, however the sum of all outgoing transition probabilities from a given state (node) must sum to 1.

Figure 4: A simple discrete Markov Decision Process

One can then define the dynamics of a finite Markov Decision Process through it’s one-step transition

probabilities, given the previous state and action. In the same way, one can define the expected reward from a

one-step transition given the previous state and action, as well as the current state. The definitions are given

below.

P
a
ss0 = Pr{st+1 = s0|st = s, at = a}

R
a
ss0 = E{rt+1|st = s, at = a, st+1 = s0}

5

In the following section, these ideas are utilised in order to define the idea of a value function, followed by

the Bellman equations.

3.4 Value Functions & The Bellman Optimality Equations

When faced with making a decision, given a particular state, one would ideally like to know the expected value of

the return to be received following each possible state or state-action pair. Nearly all modern learning methods

center around approximating value functions for the task at hand, in order to inform the policy of the agent.

There are two types of value functions; one for states V ⇡(s):S ! R the other for actions Q⇡(s, a):S ⇥A! R,

where the superscript ⇡ indicates that the value of states or state-action pairs depends on the state ! action

mappings determined by the policy ⇡.

The unique path followed by an agent, from state ! action ! state ! . . . and so on, through reinforcement

learning task is called a trajectory. Trajectories may be visualised using so-called back up diagrams, where state

nodes (white) and action nodes (black) are connected in a tree-like structure. They can be helpful in developing

an intuition for how we compute value functions, an example of one is seen in figure 5.

Figure 5: A back up diagram

In order to define the value functions it is necessary to define ⇡(a|s) as the probability of selecting action a

while in state s under the stochastic policy ⇡ (policies are explained in detail below). The formal definitions for

the state and action value functions for reinforcement learning tasks structured as MDPs are:

V ⇡(s) = E⇡{Rt|st = s} (1)

= E⇡{

1X

k=0

�krt+k+1|st = s} (2)

= E⇡{rt+1 + �
1X

k=0

�krt+k+2|st = s} (3)

=
X

a

⇡(a|s)
X

s0

P
a
ss0 [R

a
ss0 + �E⇡{

1X

k=0

�krt+k+2|st+1 = s0}] (4)

=
X

a

⇡(a|s)
X

s0

P
a
ss0 [R

a
ss0 + �V ⇡(s0)] (5)

Q⇡(s, a) = E⇡{Rt|st = s, at = a} (6)

= E⇡{

1X

k=0

�krt+k+1|st = s, at = a} (7)

= E⇡{rt+1 + �
1X

k=0

�krt+k+2|st = s, at = a} (8)

6

=
X

s0

P
a
ss0 [R

a
ss0 + �

X

a0

⇡(a0|s0)E⇡{

1X

k=0

�krt+k+2|st+1 = s0, at+1 = a0}] (9)

=
X

s0

P
a
ss0 [R

a
ss0 + �

X

a0

⇡(a0|s0)Q⇡(s0, a0)] (10)

where (1) and (6) are the standard definitions for the state and action value functions respectively, and (5) and

(10) are their associated bellman equations. The Bellman equations express the relationships between states

or state-action pairs and their successor states or state-action pairs, these expressions are used below in the

definition of optimal value functions. The true value functions, V ⇡(s) and Q⇡(s, a), under policy ⇡ may not

be determined explicitly from finite experience (sampling of trajectories) since neither the state transitions in

the MDP (determined by the rules governing the environment) nor the policy need necessarily be deterministic.

This means that sampling a finite number of trajectories under ⇡ and keeping track of rewards received from

states/state-action pairs would only allow one to approximate true value functions. However, sampling an infinite

number of trajectories would cause the approximation to converge, so sampling a large number of trajectories

and following the same process would therefore yield a good approximation of the value functions associated with

⇡ [1]. These approximations are notated as V (s) and Q(s, a). The process of learning will ultimately involve

approximating the value functions V ⇡(s) and Q⇡(s, a) through experience then using these approximations to

improve the policy by making it greedy with respect to the value functions (explained in detail below); repeating

this cycle drives convergence to a policy under which action choices in each state that would be likely to yield

the highest return, and hence admit the optimal strategy for a given task.

We must now define the notion of optimal value functions. A policy ⇡ is considered superior to a second

policy ⇡0 if, for all possible states, the following statement holds V ⇡(s) � V ⇡0
(s) (a similar statement would

hold true for action value functions). In this way value functions define a partial ordering over policies, and

one can therefore define the optimal state-value function and the optimal action-value function as the value

functions which yield the maximum return over all policies ⇡, for all possible states and state-action pairs:

V ⇤(s) = max
⇡

V ⇡(s) 8s 2 S

Q⇤(s, a) = max
⇡

Q⇡(s, a) 8s 2 S, 8a 2 A(s)

The definition of the optimal value functions allow one to define the Bellman ’optimality’ equations:

V ⇡(s) = max
a2A(s)

Q⇡⇤
(11)

= max
a

X

s0

P
a
ss0 [R

a
ss0 + �V ⇤(s0)] (12)

Q⇡(s, a) = E{rt+1 + �max
a0

Q⇤(st+1, a)|st = s, at = a} (13)

=
X

s0

P
a
ss0 [R

a
ss0 + �max

a0
Q⇡(s0, a0)] (14)

which each admit a system of equations - one for each state or state-action pair. The Bellman optimality

equations mathematically define the goal of reinforcement learning tasks - that is to find the value functions

which will inform of the action choice that will yield the optimal return. For finite MDPs the Bellman optimally

equations (i.e. the system of equations) have a unique solution [1], and if solved would yield the optimal strategy.

7

Unfortunately, unless all the environment dynamics are known, as is the case with many optimal control problems,

the system of equations cannot be solved explicitly. In the case where the environment dynamics are not known

one must rely on strategies that involve sampling trajectories and using them to iteratively approximate and

improve value functions.

In practice, a value function may take many forms so long as it fulfills the mapping function defined above

from states or state-action pairs to estimated returns. For problems where the action and state spaces are

discrete it is often enough just to use a table where the row numbers map to states and the column numbers

map to actions. In the case where the action and/or state spaces are continuous we need to use something

that can approximate a continuous function, such as an artificial neural network (ANN) or or a random forrest

model. Figure 6 illustrates examples of both cases. The universal approximation theorem for ANNs (specifically

the theorem refers to a single layer perception) assures us that we are able to approximate any function with

arbitrary accuracy using an ANN, hence ANNs are at the core of many of the modern reinforcement learning

algorithms desinged to solve high-dimensional, continuous state space tasks.

Figure 6: An Action Value function as a table (left) or a neural network (right)

As illustrated in figure 6, an ANN parameterised by ~✓, f~✓:R
n
! Rm, serving as an approximator to an action-value

function would take as input a vector of real-valued components defining the state space at time t, st, and

output a vector of real valued components corresponding to the value of possible actions in that state, A(st).

Implementations of value functions as neural networks are examined later on in the report.

3.5 Elementary Policies & the Exploration vs. Exploitation Problem

As stated previously, a policy is a set of rules defining a state to action mapping, and although policies are often

informed by their associated value functions, they need not be synonymous with them. A class of policies which

are completely informed by their associated value functions are called greedy policies; these are policies under

which the chosen action in any given state must be the action a such that a = maxa Q⇡(s, a), where ⇡ is the

policy in question. Now, unless one finds oneself in possession of the optimal value functions, this policy will

usually produce very poor returns in the long run as it encourages no exploration of the state space whatsoever,

and hence little to no improvement to the value functions will be admitted. A second class of policies are called

✏-soft policies. These are policies under which action selection in a state s in tantamount to sampling from a

multinomial distribution over all possible actions a 2 A(s), along with the condition that ⇡(a|s) � ✏
|A(s)| , for

some ✏ � 0. In words this means that with probability ✏ a random action may be selected uniformally. When a

random action is not selected under an ✏-soft policy, with a probability 1 � ✏, the action a 2 A(s) such that

a = maxa Q⇡(s, a) is selected. This is a simple mechanism for encouraging exploitative behavior, doing so by

ensuring that new trajectories may be experienced by the agent regardless of what the value function deems the

8

most valuable action.

For many modern solutions to the reinforcement learning problem, the type of stochastic action selection

described above has been a satisfactory method of encouraging exploration of the state space and has proved

successful in several of them [1]. In implementing such solutions, where something like an ✏-soft policy is used,

the question of how big epsilon should be - and thus how often actions are randomly selected - gave rise to one of

the core problems in reinforcement learning: the Exploration Exploitation Problem, which is the problem

of deciding to what degree the agent should explore the state space though stochastic action selection, versus

the degree to which the agent should exploit it’s current knowledge of the environment in order to generate

the highest possible return over time. In a simple benchmark task, called the n-armed bandit task, the agent

interacts with a static (single state) environment, and has a choice at each time step of pulling one of n levers.

Pulling a single lever returns a value sampled from a Gaussian distribution with a fixed mean and variance of

1. The means of each of the distributions belonging to the n levers are generated by sampling initially from a

Gaussian distribution with a mean of 0 and a variance of 1, so each of the distributions belonging to the levers

overlap significantly. Given 2000 time steps per episode, the agent selects a lever at each time step according to

an ✏-soft policy, receives a reward sampled from the distribution belonging to the lever and updates the value

estimates of the lever selected after each time step. One can show that varying ✏ has a significant effect on the

return generated per episode, with the effect becoming more obvious as more episodes are played. ✏=0 (a greedy

policy) performs very poorly, where as ✏ values of 0.01 and 0.1 both improve significantly on the performance.

It is also important to observe that performance starts to degenerate for ✏ � 0.3 as it prevents the agent from

exploiting it’s knowledge effectively once it has reasonable estimates for the action value functions. These results

can be seen in figure 7.

Figure 7: Returns per episode, over 1000 episodes for different ✏, generated during an n-armed bandit task

In theory, given any MDP and an infinite amount of time in which to train the agent, an ✏-soft policy with a

reasonable value of ✏ should admit convergence to the optimal value functions over time. This is because, given

⇡(s, a) � ✏
|A(s)| for all s 2 S and all a 2 A(s), all possible trajectories allowed by the environment (i.e. where

state transitions are non-zero) have a non-zero probability:

P (⌧) = P (s1, a1, ..., sT , aT) = P (s1)
TY

t=1

⇡(st, at)P
at
stst+1

> 0.0

which essentially means that all trajectories allowed by the environment should be experienced by the agent

given infinite time for training. In practice however this does not hold, as nobody has an infinite amount of time

in which to perform training and in the finite amount of time available, the compound probabilities for many

trajectories are far too small to occur frequently enough for the agent to learn effectively from them, if they

occur at all. This problem is not necessarily an obstacle for environments which are "reward-dense", where the

9

agent is likely to receive regular evaluation of it’s actions in the form of rewards from the environment. However,

several tasks which we would like to solve are "reward-sparse" meaning that, in order to succeed at acheiving

the explicit goal of the task, an agent may have to take several consecutive actions randomly without receiving

any feedback at all. In such environments, the problem of very small compound probabilities as described above

comes into play. In such cases, the effectiveness of stochastic action selection, as in ✏-soft policies, breaks down.

In order to solve these tasks researchers have had to develop mechanisms encouraging more ordered exploratory

behaviour by agents in the absence of explicit rewards. It is for this reason that the methods described in Part

B of this report have been developed.

What follows is a description of a general framework for solving the reinforcement learning problem, followed

by a description of two of the most widely used modern deep reinforcement learning strategies used, where

after we will go on to describe how these methods have been augmented to include mechanisms for encouraging

exploration in reward-sparse environments.

4 Generalised Policy Iteration

We will now outline a general, abstract framework for solving the reinforcement learning problem. The

main algorithm, Generalised Policy Iteration, involves two sub-processes namely Policy Evaluation and Policy

Improvement. The algorithm as described below is abstracted away from any notions of implementation, as it

may be applied generally in solving reinforcement learning problems regardless of the type of value functions,

policy, state space or actions which define any specific problem which we may want to solve.

In general, policy evaluation is the process of approximating the value functions under a policy ⇡. In the

case where we know the state transition probabilities for a finite MDP, as is the case with problems of optimal

control, the dynamic programming methods involve computing a sequence of approximations for the state value

function, initialised with arbitrary values for each state, updated using the Bellman Equation (5) and ultimately

converging to the true value function under ⇡: V1(s), V2(s)...! V ⇡(s).

In cases where the transition probabilities are not known, it is then desirable to compute action value

functions rather than state value functions since we cannot know what the optimal action choice would be at

each time step as we would not be able to compute the expected value over all possible states. In such cases, the

action value function may be approximated by sampling trajectories from the environment, using the returns

generated during the experience to update the value approximations for state-action pairs. Methods which use

only sampled returns generated from experience to iteratively update value functions are called Monte Carlo

methods, and methods which use a combination of sampled returns and existing value approximations from

successor states - referred to as bootstrapping - are called Temporal Difference (TD) Methods. Where Monte

Carlo methods rely on the reinforcement learning task being episodic in nature, TD methods can be used to solve

both episodic and continuing tasks. This is because Monte Carlo methods rely on the existence of a terminal

state, and update the estimation of a state-action pairs using sampled returns averaged over several episodes.

In n � step TD methods the updates to the value estimate for a state-value pair are done by sampling and

recording rewards gained for the n-steps following an action, and create an incremental update of the estimate

using the sampled rewards in combination with the current estimated value of the state-action pair following

the nth reward. In continuing tasks, values may be updated online (while the agent is engaged in the task)

using n-step TD methods. In both Monte Carlo and TD methods, the objective during policy evaluation is to

10

begin with an arbitrarily initialised action value function Q(s, a) and, following a policy ⇡, which may simply

involve random action selection initially, update the value estimates for each state-action pair encountered, thus

approximating the value function belonging to that policy Q⇡(s, a). In order to ensure that all (or sufficiently

many) state-action pairs are visited during sampling, some mechanism must be put in place to ensure exploration;

in most elementary solutions this simply involves following an ✏-soft policy.

Following a single round of policy evaluation, we would like to adjust our policy in order to make action-choices

which will yield higher returns. In order to do this we need to make our policy greedy with respect to the new,

updated estimate of the value function. Meaning that for each s 2 S, the preferred action under the policy ⇡ is

⇡(s) = argmax
a

Q(s, a)

As with before, under an ✏-soft policy, in order to maintain exploitative behaviour one would not select the

identified greedy action in a deterministic way, but sample from a multinomial distribution where the probability

of selecting the greedy action would be 1� ✏, choosing randomly from all available actions otherwise.

In order to converge on the optimal action value function Q⇤, one would continue iterating through cycles

of policy evaluation; sampling trajectories from the environment and updating the action value function, and

policy improvement; adjusting the policy making it greedy with respect to each new approximation of Q. This

process is called Generalised Policy Iteration (GPI).

Figure 8: An illustration of Generalised Policy Iteration from [1]

GPI gives us a sequence of action value function approximations and their associated greedy policies, ⇡0 !

Q⇡0 ! ⇡1 ! Q⇡1 . . .⇡⇤
! Q⇤, which we can prove will converge on Q⇤ in the following way. Let ⇡k+1(s) be the

greedy (deterministic) policy with respect to Q⇡k+1 , then for the previous (deterministic) policy ⇡k we have that

for all s 2 S:

Q⇡k(s,⇡k+1(s)) = Q⇡k(s, argmax
a

Q⇡k)

= max
a

Q⇡k(s, a)

� Q⇡k(s,⇡k(s))

= V ⇡k(s)

So each ⇡k is better than in successor ⇡k+1 unless it is equivalent, in which case both policies are the optimal

policy, which is a fixed point in the system. This is the proof of the policy improvement theorem and it is

11

dependant on who assumptions: first, that we are allowed an infinite number of episodes (in the case of episodic

tasks) and, second, that initial state in each episode is selected at random from all possible states, which is called

the assumption of "exploring starts", which will not be considered in this report as it is not a common feature of

most reinforcement learning tasks we would like to solve. However, the same goal of ensuring that all states

are visited can be guaranteed through stochastic action selection or other methods that encourage exploration,

which we will explore. With respect to the first assumption, since sampling infinite trajectories is not practically

possible, we will at best get asymptotic convergence to Q⇤.

5 Modern Reinforcement Learning Algorithms

Two highly-utilised modern algorithms for solving reinforcement learning tasks are described in the section below.

Both follow the strategy of GPI in order to converge to optimal action value functions, and both make use of

artificial neural networks as function approximators. The first is Monte Carlo Policy Differentiation, which is a

Monte Carlo Method, and the second is Deep-Q Learning, which is a TD method.

5.1 Monte Carlo Policy Differentiation

Monte Carlo Policy Differentiation (MCPD) is a method for solving reinforcement learning tasks in which the

state space, S, may be defined by a vector of continuous, real-valued variables. The policy ⇡ : S ⇥A! [0, 1] is

governed by a function approximator (e.g. an artificial neural network or a random forest), which is parameterised

by ~✓ 2 R
b, and gives a distribution of actions over states. We will denote the parameterised policy as ⇡~✓(a|s),

giving the probability of an action a given a state s. In practice, at each time step t the function approximator

would take as input a vector ~x 2 R
m defining the state s and output a vector ~y 2 R

n (where
PK

i=1 yi = 1) which

represents a multinomial distribution over possible actions a 2 A(s). The broad strategy of the algorithm will

be to iteratively update the parameters of the function approximator upon which the policy depends in order to

converge upon an optimal policy.

Figure 9: An example of using an ANN to produce a distribution of actions over states

In short, the learning algorithm for MCPD is to have the agent sample several trajectories ⌧ through

experience with the environment, where we define a trajectory to be a sequence of consecutive states and actions

observed and taken by the agent respectively, during an episode. At each time step of each trajectory, after a

single action selection, the gradient r~✓log(⇡~✓(at|st)) is computed and stored for the chosen action, along with

the resultant the reward. This allows one, after N >> 1 trajectories have been sampled, to approximately

compute the gradient of an objective function J(~✓), defined as the expected reward under the policy ⇡~✓ , by

averaging over the product of policy gradients and rewards from all N trajectories. The parameters ~✓ are then

12

updated, using the computed gradient r~✓J(
~✓), in the direction of steepest ascent which drives the agent to

make decisions that yield higher returns. In terms of GPI, we can think of the process of sampling trajectories

from the environment and storing the generated returns and their corresponding gradients as the process of

policy evaluation, then computing the gradient of the objective function and updating the parameters may be

thought of as policy improvement. One would repeat the cycle of evaluation and improvement several times and

then, given that the Markov Property holds, expect convergence to an optimal policy. Formally the learning

algorithm is defined by repetition of three steps:

1. Sample {⌧}Ni=1 trajectories from the environment using ⇡~✓, storing generated returns and associated

gradients

2. Compute r~✓J(
~✓) = 1

N

PN
i=1[

P
tr~✓log(⇡~✓(a

i
t|s

i
t))][

P
t r(a

i
t|s

i
t)] where N >> 1

3. Update parameters ~✓ ~✓ + ↵r~✓J(
~✓)

The objective function and its gradient shown in step 2 are derived in the following way. Begin by defining

P~✓(⌧) as the probability of a given trajectory ⌧ occurring. P~✓(⌧) may be decomposed into the product of

conditional probabilities at each time t; the probability of the agent taking an action a given s, ⇡~✓(at|st),

multiplied by the probability of the transition to some new state at time t+ 1, Pat
stst+1

, which depends on the

previous state and action, and is governed implicitly by the environment. If Ps0 is the probability of the initial

state occurring then we define the full compound probability of a single trajectory as

P~✓(⌧) = P~✓(s0, a0, r1, ..., aT�1, rT , sT) (15)

= Ps0

T�1Y

t=1

⇡~✓(at|st)P
at
stst+1

(16)

where sT is the terminal state of the episode. Since possible trajectories are sampled from the distribution

defined by (16) we write ⌧ ⇠ P~✓(⌧). Then defining R(⌧) :=
P

t r(at, st) as the return generated from a single

trajectory, we can express the objective function as the expected reward over all possible trajectories as

J(~✓) = E⌧⇠P~✓(⌧)
[R(⌧)] (17)

=

Z
P~✓(⌧)R(⌧)d⌧ (18)

Ignoring for the moment that the integral at (18) is intractable, since the explicit probability density function

governing the initial state and the state transitions is not know, what one would like to do next is take the

gradient of the objective function so as to perform an update to the parameters, as in step 3 of the algorithm.

Using the properties of the logarithm we can manipulate the integrand in order to transform the gradient of the

objective function into something we can approximate:

r~✓J(
~✓) = r~✓E⌧⇠P~✓(⌧)

[R(⌧)] (19)

= r~✓

Z
P~✓(⌧)R(⌧)d⌧ (20)

=

Z
P~✓(⌧)

r~✓P~✓(⌧)

P~✓(⌧)
R(⌧)d⌧ (21)

13

=

Z
P~✓(⌧)r~✓log(P~✓(⌧))R(⌧)d⌧ (22)

= E⌧⇠P~✓(⌧)
[r~✓log(P~✓(⌧))R(⌧)] (23)

Thus, turning the gradient of an expectation (19) into the expectation of a gradient (23). Now, notice that, from

(16)

r~✓log(P~✓(⌧)) = r~✓log(Ps1

T�1Y

t=1

⇡~✓(at|st)P
at
stst+1

) (24)

= r~✓[log(Ps1) +
T�1X

t=1

(log(⇡~✓(at|st)) + log(Pat
stst+1

))] (25)

=
T�1X

t=1

r~✓log(⇡~✓(at|st)) (26)

where the the gradient operator annihilates all the state transition probabilities, as they do not depend on
~✓. Then we perform a Monte Carlo Simulation, which is the process of drawing a random variable from a

distribution a large number of times and averaging out in order to approximate the expected value of that

variable, or a function which depends on it. In theory, it is possible to approximate the true expected value

arbitrarily accurately as N gets large since E[f(x)] = limN!1
1
N

PN
i=1 f(xi)xi⇠p(x). Applying this idea along

with the result in (26) to the expression for the gradient of the objective function in (23)

r~✓J(
~✓) = E⌧⇠P~✓(⌧)

[r~✓log(P~✓(⌧))R(⌧)] (27)

= lim
N!1

1

N

NX

i=1

[
X

t

r~✓log(⇡~✓(a
i
t|s

i
t))][

X

t

r(ait|s
i
t)] (28)

which gives the final expression for the gradient of the objective function:

r~✓J(
~✓) ⇡

1

N

NX

i=1

[
X

t

r~✓log(⇡~✓(a
i
t|s

i
t))][

X

t

r(ait|s
i
t)] where N >> 1 (29)

5.2 Deep-Q Learning

One-step Q-learning is a temporal difference method where, at each time step, the observed reward resulting

from the previous action is used to update the action value function using the the update rule

Q(st, at) Q(st, at) + ↵[rt+1 +max
a

Q(st+1, a)�Q(st, at)] (30)

Where 0 < ↵ < 1 is a learning rate parameter. If infinite sampling of trajectories is allowed, and in each state all

possible actions have a non-zero probability of being selected, we are guaranteed that the values of all state-aciton

pairs will continue to be updated. It has been proven that if these conditions hold, we are guaranteed convergence

of Q! Q⇤ with probability 1 [1].

As with MCPD, we would like to generalise the method of Q-learning for reinforcement learning tasks involving

discrete state spaces to ones where the state spaces are continuous. Mnih et al. (2013) developed a generalisation

of Q-learning for such tasks. In their paper [2], they propose a Deep Q-network (DQN) Q~✓(s,a) ⇡ Q⇤(s, a); an

ANN parameterised by ~✓ which approximates the optimal action value function. An example illustration for this

14

may be seen in figure 6. The technical details of the algorithm in [2] will not be described here, but essentially

the strategy is, as with MCPD, to iteratively update the parameters of the network in order to converge on

the optimal action value function. Again, this is achieved through taking the gradient of the expression for

the chosen action (produced by the function approximator) with respect to the parameters. The difference

being that, in Deep Q-Learning, instead of an objective function that measures expected reward, we have a

loss function that measure the error between our parameterised Q-network and Q⇤. This is achieved through

sampling of one-step trajectories and updating the value estimate using the gradient of a loss function. In fact, in

the algorithm described in [2], there are a sequence of loss functions that occur during training, at each iteration

i the loss function is defined as

Li(~✓i) = Es,a⇠⇢(.)[(yi �Q~✓i
(s, a))2] (31)

where yi = Es0⇠E [r + �maxa0 Q~✓i�1
(s0, a0)|s, a] is the target at iteration i, ⇢(s, a) is the distribution over states

and actions (as with MCPD, a product of conditional probabilities), and E is the environment. In a similar way

to MCDP, the learning algorithm works by sampling one-step trajectories from the environment, storing batches

of tuples containing transition information at each time t; (st, at, rt+1, st+1). Then, at a regular intervals, two

identical copies of the Q network are used for training, Q~✓i�1
and Q~✓i

, where the weights ~✓i�1 are held constant,

and mini-batches of transitions are selected randomly from memory to minimise (31) using the gradient

r~✓i
Li(~✓i) = Es,a⇠⇢(.),s0⇠E [(r + �max

a0
Q~✓i�1

(s0, a0)�Q~✓i
(s, a))r~✓i

Q~✓i
(s, a)] (32)

where the expectation of gradient, as with MCPD, may be approximated by averaging over a large number of

sampled tuples. Alternatively, as noted in [2], stochastic gradient descent may be used for efficiency. Since the

loss function depends on the weights of the Q-network, a moving target is created (and hence a sequence of loss

functions), which is the reason for holding one copy of the network fixed and performing gradient descent on a

batch at each iteration. The complete algorithm may be found in [2], but a variation of it is used in the final

section of the report to solve the Mountain Car problem.

5.3 Exploratory Behaviour in MCDP and DQN

A final comment on both the Deep Q-Learning (DQN) and MCPD algorithms is that, in order for the conditions

for convergence to the optimal policy and value function to be satisfied, they must both operate as off policy

algorithms. This means that they should learn the greedy strategy ⇡(s) = maxa Q~✓(s, a), but choose actions

during sampling according to an ✏-soft policy to maintain sufficient exploration of the state space. Typically,

both algorithms use this method of stochastic action selection and learn optimal behaviour without a world

model, which is a model of the environment dynamics learned through experience. It will be shown below that

the core learning algorithms presented above may be augmented to encourage broader exploratory behaviour in

reward-sparse environments by incorporating such strategies as learning a world model (among other strategies)

in order to define an implicit reward for mapping out the state space, even in the absence of explicit rewards.

15

PART B: A Survey of Curiosity-Driven Learning Algorithms

6 Curiosity Driven Reinforcement Learning

In this section, a summary of some of the relevant historical work on curiosity driven reinforcement learning

is presented, followed by a summary of three promising curiosity based algorithms developed recently. The

historical period considered is from 1991, when the initial ideas were proposed, until 2016, where after the most

effective methods to date have been developed.

6.1 Curiosity, Novelty and Memory

In thinking how to embed an implicit drive to explore in a reinforcement learning agent, algorithmic solutions

appear to fall into two broad categories, both involving world models of one form or another. The first is based

on the idea of next-state prediction error, where the agent has a model of the world and tries to predict the

next state, given the previous state and action. The second is based on memory, where the agent builds up a

representation of the world and attempts to acquire a more complete knowledge of it’s environment. In both

cases the reward for actions leading to unexpected or unknown outcomes must be supplemented in order to

encourage a exploratory behaviour. There are several ways for such a mechanism to be implemented, and

methods differ across environments and tasks. The history of this research has been a process of attempting

to formalise, both conceptually and mathematically, curiosity and exploration in the context of reinforcement

learning in an attempt to find a general theory that may be broadly applied.

6.2 A Brief History of Curiosity and Exploration

In 1991 Schmidhuber published a paper titled A Possibility for Implementing Curiosity and Boredom in Model-

Building Neural Controllers [3] in which he proposes the foundational ideas for using world models to encourage

exploration in reinforcement learning agents. He then published a paper in 1993 along with two other researchers

titled Reinforcement Driven Information Acquisition In Non-Deterministic Environments [5] where he builds

on ideas from his previous paper, using ideas from the field of information theory and proposing a method for

maximising the acquisition of information about an environment.

In [3] Schmidhuber proposed the idea of a learning algorithm that would reflect what is observed in many

biological learning systems; an interplay between goal directed learning, such as minimising pain and maximising

reward, and explorative learning. In explorative learning, Schmidhuber frames the objective as simply ’increasing

ones knowledge about the world’, defining curiosity loosely, writing "one gets curious when one believes there is

something about the world one does not know". A claim made in the paper is that this idea had not yet been

explored in connectionist literature (connectionism is a movement in cognitive science that hopes to explain

intellectual abilities using artificial neural networks). The learning algorithm proposed by Schmidhuber makes

use of one larger artificial neural network, composed of two smaller networks, a controller network and a model

network. The controller network has the job of making and learning optimal action selections in order to

maximise reward over time, similar to the parameterised policy described in MCDP. The model network has the

job of learning an accurate model of the environment dynamics, taking in a vector representation of an action at

each time step and trying predict the resulting state of the environment. The proposed model relies on a framing

16

of the reinforcement learning problem that varies from the standard one described above in that the state vector

resulting from the previous time step, used as input to the controller network, includes the reward signal which

is split up into reinforcement (positive) and pain (negative) signals. This makes the model recurrent in nature.

The proposed learning algorithm then has two main goals; first, to minimise pain and maximise reinforcement,

and second, to build an accurate model of the environments dynamics. At each time step, the agent observes the

state information, including reward and pain signals resulting from the previous action selection, where after

it selects an action for the current time step which it feeds into the environment, as well as the world model.

Updating of the parameters works by computing the gradient of a loss function, defined as the euclidean norm of

the difference between the predicted and actual resultant state. The gradient is computed and used to iteratively

improve the models knowledge of the environment dynamics. The parameters of the controller network are then

updated in order to minimise the difference between the pain and reinforcement values predicted by the model

network, and the desired values. In order to update the parameters, the gradients are essentially propagated

through the model network, to the controller network. Since this is the case, only if the model network is a good

predictor of the environments dynamics can we expect the controller network to converge. An illustration of the

model proposed by Schmidhuber is shown below.

Figure 10: The model proposed in Schmidhuber’s 1991 paper [3]

The key idea proposed in [3] for augmenting such a model to encourage exploration, is to include as part of

the reinforcement (reward) feedback at each time step a small positive amount proportional to the prediction

error made by the model network at each time step. In this way, the agent is rewarded for taking actions that

result in something that the model network predicts poorly, and the behaviour resulting in such situations

will be reinforced until the model network learns to predict the outcome accurately. In this way, Schmidhuber

proposed that it should be possible to encourage exploration of the state space in the absence of explicit reward,

and that upon sufficient exploration of a local subset of the state space the agent would exhibit something

akin to boredom. Then, as the world model more accurately predicts the dynamics of the environment, one

would expect convergence of the controller network since the predictions of pain and reinforcement resulting

from actions in familiar situations would be accurate, too. Although results of testing an implementation were

not included in the paper, the idea of using the next-state prediction error as an implicit reward to reinforce

explorative behaviour has been used in several models developed in recent years which have achieved state of the

art performance in reward-sparse settings (mostly video game environments) for which significant progress was

not possible using stochastic action selection techniques, as in ✏-soft policies.

In [5], Schmidhuber et al. incorporated some of the ideas in [3], implementing a variation of standard

17

Q-learning with rewards based solely on exploration. In order to achieve this, the authors propose building

a world model for a non-deterministic environment where the state space is discrete, by keeping count of the

state-action pairs visited, as well as the resultant states to which they transition. Through keeping count, one is

able to approximate state transition probabilities with increasing accuracy by sampling trajectories from the

environment. The novel idea presented by the authors is an algorithm called Reinforcement Driven Information

Acquisition, where the only reward for actions taken is a measure of difference between the approximated discrete

probability distribution from one time step to the next (the authors propose entropy loss, Kullback-Leibler

distance or a simple sum over absolute differences). In this way the agent is drawn to state-action pairs where it

stands the best chance of learning something new - improving its knowledge of the world - in the sense that it’s

approximation of the discrete probability distribution representing possible transitions from the state-action pair

is incorrect by some measurable amount, and may be improved through experience.

Although similar ideas were developed in other fields of study over the next decade, no explicit progress was

made in the field of reinforcement learning that built on the existing theory after the papers by Schmidhuber

[6]. In 2004 and 2005 Barto et al. wrote two papers ([6], [7]) based on a single large computational study of

intrinsically motivated reinforcement learning, taking the ideas introduced by Schmidhuber and extending them,

proposing a new framework which emphasises the utility of explorative behaviour for developing re-usable skills.

The authors make the assertion that intrinsically motivated behaviour in animals leads to the development of

broad sets of reusable skills necessary for successfully navigating their environment. They argue that such skills

are developed due to an intrinsic reward system that favours "development of broad competence rather than

being directed to more specific externally-directed goals", and that the skills are then used (and re-used) in an

adaptive manner to solve more specific tasks over time. The authors then introduce a new model for learning

where the agent is allowed to develop options, which are essentially new skills, and option models. An option

is described by the authors as a subroutine, or a sequence of a combination of primitive actions and/or other

options (a primitive action is simply an action as described thus far). Invoking an options triggers a sequence

of actions, each of which may affect the environment. An option model models a portion of the environment

dynamics, and enables the agent to predict what the result of exercising an option will be. In the toy problem

used by the authors to illustrate the new framework, the agent exists within a grid world environment where,

initially, the agent has only a set of primitive actions it may select from. In the environment, different sequences

of primitive actions trigger what are called ’salient events’. When such a sequence of events is executed, the

corresponding option and option model are created and made available to the agent. In response the salient event

generates a stimulus for the agent (e.g. turning on a light), which is a response the agent fails to predict initially,

but learns over time by improving the option model. To incentivise exploration, as proposed by Schmidhuber in

[3], the agent is rewarded proportional to the error of its prediction. In the grid world environment, there is

only one salient event that delivers explicit reward, and this event may only be triggered by a sequence of 14

primitive actions. The authors illustrate experimentally that the agent is able to learn options which combine

sequences of actions and other options in order to learn how to trigger the salient event that delivers the explicit

reward, significantly faster that an agent relying on extrinsic reward and ✏-greedy action selection only. The

results of this experiment, illustrated in figure 11, show that the agent equipped with intrinsic motivation and

the ability to learn skills manages to find the explicit reward orders of magnitude faster than an agent relying

only on stochastic action selection. This work has not been extended to applications in deep reinforcement

learning as of yet.

18

Figure 11: Results from [6], [7]. Intrinsically motivated agent learns how to generate extrinsic reward faster than

an agent relying only extrinsic reward to learn the optimal policy

Attempts were then made in 2009 ([8]) and 2010 ([9]) to present a general, unified theory of intrinsic

motivation in reinforcement learning, with [9] incorporating the ideas of Barto et al. in [7]. However, it appears

that these ideas have yet to take hold in the mainstream. In the following years improvements in computation

brought on the emergence of modern deep reinforcement learning (reinforcement learning methods reliant on

deep neural networks, such as MCDP and DQN), and the initial ideas presented by Schmidhuber provided the

basis for count-based (memory) and predictive methods for designing curiosity-driven learning algorithms.

In 2012 a paper ([10]) titled Exploration in Model-based Reinforcement Learning by Empirically Estimating

Learning Progress published by Lopes et al. made robust improvements to count-based exploration algorithms for

finite state and action spaces, Rmax and Bayesian Exploration Bonus (BEB). The authors improve on the previous

algorithms by estimating which parts of the state and action space are likely to yield significant improvement

in knowledge about the dynamics of the environment empirically, without relying on prior estimations about

visitation count thresholds or assumptions about the degree to which the environment is stochastic. They achieve

this by defining a function ⇣(s, a; k) which estimates to what extent the previous k visits to the state-action

pair (s, a) improved the agents knowledge of the environment dynamics, i.e. the estimated learning progress.

The function ⇣ is unique for each state-action pair, and is updated based off empirical knowledge gained from

experience in the environment, making it able to adjust to changes in environment dynamics (non-stationary).

The algorithm proposed by the authors uses the Q-Learning algorithm for finite state and action spaces presented

by Sutton and Barto in [1], augmenting the reward function using ⇣ as follows. For the improved RMAX algorithm,

⇣ �RMAX, the authors implement the reward function

R⇣�R�MAX(s, a) =

8
><

>:

R(s, a) ⇣(s, a; k) < m

RMAX otherwise

In words, the reward from the environment is given as per usual if nothing stands to be learned from taking

action a in state s, but if something stands to be learned the reward is supplemented to encourage the agent

to return to the state-action pair. Then, for the improved BEB algorithm, ⇣-BEB, the authors implement the

reward function

19

R⇣�EB(s, a) = R(s, a) +
�

1 + 1p
⇣(s,a;k)

for some constant �. Both algorithms are shown to improve on the performance of the originals, the method of

exploration under a standard ✏-greedy policy, in a baseline setting (a version of gridworld).

In 2016, Bellemare et al. (DeepMind) published Unifying Count-Based Exploration and Intrinsic Motivation

[11] address the challenge of generalising previous count-based methods of exploration to continuous state-spaces,

using non-tabular reinforcement learning methods. The observation is made in the paper that for continuous

states, or in cases where the state space is very large, it becomes unlikely for a state to be visited more than

once, if ever, hence the need for generalisation. The authors extend the simple idea of counting state-action pairs

and state transitions, applying it to the case of continuous state spaces constructing a probability density model

from what they call ’pseudo-counts’. The density model gives the probability of observing a new state x given

a finite sequence of states x1...xn. The model is used to approximate information gain from one time step to

another; the authors coin the approximation metric is ’prediction gain’ which approximates the Kullback-Leibler

Divergence (a measure of the difference between probability distributions). The prediction gain is used in a

function which then yields an approximation for the pseudo count, which is in turn used to augment the reward

function, giving the agent a bonus reward proportional to the amount of knowledge acquired from explorative

behaviour. The authors used the pseudo-count / prediction gain mechanisms to augment two industry standard

algorithms, Deep-Q Network (DQN) and Asynchronous Advantage Actor-Critic (A3C), on a set of Atari 2600

games, which are considered benchmark tests for modern reinforcement learning algorithms. The augmented

algorithms improved on the originals moderately across all tested games, and dramatic improvement on one game

in particular, MONTEZUMA’S REVENGE, which the authors assert is the most challenging and unforgiving

of all the Atari 2600 games, as the environment is incredibly reward-sparse and riddled with traps; each level

requiring a lot of exploration and complicated sequences of actions to pass. The augmented DQN algorithm

(with exploration bonus) managed to explore 15 of 24 rooms in the first level of the game, as opposed to the 2

rooms managed by the original algorithm (without exploration bonus), setting an industry record at the time

the paper was written.

Figure 12: Record exploration by [11] on Montezumas revenge, using DQN with an exploration bonus.

There are several other papers which made contributions in the area of curiosity-driven reinforcement learning

between 2010 and 2016 (e.g.[12], [13], [14], [15]), however for the sake of space and time they will not be covered

here. Instead, in the following section, three of the most recently developed and promising algorithms are

explored in detail.

6.3 Recent Developments

In this section, work from three recent papers is explored. The algorithms engineered by the authors have

each achieved breakthrough performance in testing environments, all built on the ideas developed in the work

20

described in the previous section. Each of the three algorithms share (at least) one thing in common; they rely

on computation and the power of artificial neural networks as function approximators to generate results, rather

than trying to devise a strategy that is mathematically or statistically elaborate.

6.3.1 Curiosity-Driven Exploration by Self-Supervised Prediction, 2017

The authors of [16] propose an Intrinsic Curiosity Module (ICM) which generates a reward bonus for explorative

behaviour, rit, in addition to any explicit reward received from the environment, ret , based on the agents ability

to predict the features of the next state given the current state and action. The authors used existing deep

reinforcement learning algorithms in conjunction with the ICM to experiment with rewarding explorative

behaviour in two video games, VizDoom and Super Mario Bros, as they presented challenges that had yet to be

overcome by other methods at the time of writing. In formulating the problem, the authors propose that intrinsic

reward may be formulated in two ways; (1) encouraging the agent to explore novel states, requiring, in continuous

state spaces, a statistical model of the environments dynamics (as seen in [11]), or (2) encourage the agent to

reduce uncertainty in it’s ability to predict the consequent state from a state-action pair. When considering

applying strategies of either form to reinforcement learning tasks involving high-dimensional, continuous state

spaces, such as video games, both face two distinct challenges. First, the sheer number of possible permutations

of pixels make the raw state space challenging to model and nearly impossible to predict at the pixel level, which

may lead the agent to believe it is encountering novel states or acquiring significant new knowledge of environment

dynamics when in fact it is not. Secondly, if the environment has stochastic elements in it’s dynamics, the agent

may become fixated on the source of randomness in the environment, believing it is exploring when it is not.

The proposed solution, ICM, formulates intrinsic reward in the second way, next state prediction, and presents

a solution that solves both of the challenges of next state prediction in both video game environments. The

devised solution is tested on variations of the video game environments where the density of explicit rewards

vary from very dense, to completely sparse (no explicit rewards), achieving promising results across the board.

Figure 13: The ICM module proposed in [16]

As in in the MCPD algorithm, the authors make use of a policy gradient method during implementation,

where the policy ⇡~✓P
(a|s) is an artificial neural network parameterised by ~✓P where the subscript P stands

for "policy". As with before the policy gives a distribution of actions over states, and the goal of the learning

algorithm is to maximise the expected reward, max~✓P E⇡[
P

t rt], through iteratively converging to the optimal

policy. The difference is that, at each time step, the reward given to the agent is a sum of two parts, an extrinsic

21

reward from the environment and an intrinsic reward generated by the agent, rt = ret + rit. The intrinsic reward

is generated by the ICM, which contains two components, each with a distinct function. The first component

is the inverse model, which is an artificial neural network parameterised by ~✓I . The inverse model has two

sub-tasks. Firstly, it has the task of transforming the high-dimensional pixel representation of states st and st+1

into lower-dimensional, latent feature vectors �(st) and �(st+1), which we take from a hidden layer in the neural

network, as pictured in figure 14.

Figure 14: Example of a low-dimensional feature vector extracted from a hidden layer in a deep neural network

Secondly, it uses the feature vectors in order to inversely predict at, the action taken in state st, resulting in

st+1. The predicted action ât is, as usual, taken from the output layer of the neural network. The inverse model

amounts to learning a function

ât = g(st, st+1; ~✓I)

In training the neural network belonging to the inverse model the loss function optimised is

min
~✓I

L1(ât, at)

where LI computes a measure of difference between the actual and predicted action at. If at is discrete, the

output of g is a soft-max distribution across all possible actions, in which case minimizing LI amounts to

computing a maximum likelihood estimation of ✓I under the produced multinomial distribution. In optimising

the neural network in this way, the inverse model achieves the goal of encoding in the latent feature space only

state information which is affected by the agents actions in some way. In other words, the neural

network will filter out any elements of the environment captured in the raw pixel vector that are stochastic in

nature. This property is crucial for constructing a good intrinsic reward for encouraging exploration, which is

the task fulfilled by the second component of the ICM, the forward model. The forward model is also a neural

network, parameterised by ~✓F , which takes as input the action at and the latent feature vector �(st), extracted

from the inverse model, and attempts to predict the next-state latent feature vector �̂(st+1). The forward model

amounts to learning the function

�̂(st+1) = f(�(st), at; ~✓F)

22

where the loss function being optimised is the square of the L-2 norm of the difference between the predicted

and actual latent feature representation of the state st+1

LF (�(st+1), �̂(st+1)) =
1

2
||�(st+1)� �̂(st+1)||

2
2

The error produced by LF will then be large if the agent fails to predict elements of the resulting states affected

in some way by its actions. In this way, both the challenge of prediction in the high-dimensional state space and

the challenge of avoiding getting caught in the trap of mistaking stochastic features for meaningful novelty are

overcome. The intrinsic portion of the reward function fed to the agent at each time step is then proportional to

LF , giving the full reward function at time t

rt = ret + rit

= ret + ⌘LF

= ret +
⌘

2
||�(st+1)� �̂(st+1)||

2
2

where ⌘ > 0 is a small scaling factor. Constructing the reward function in this way encourages "good" explorative

behaviour of the state space, and allows the agent to get "bored" as the forward model becomes better at

predicting the latent features of the next-state.

The ICM was used in conjunction with the Advantage Actor Critic (A3C) algorithm, notated as ICM+A3C,

and tested against two baselines algorithms in the video game settings; ICM(pixels)+A3C, in which the forward

model learnt to predict raw pixel state vectors instead of latent feature vectors, and vanilla A3C. Results from

testing with varying degrees of reward density in the VizDoom environment, see figure 15, show that even in the

"very sparse reward" variant of the environment, the intrinsic reward encourages sufficient exploration to seek

out sources of extrinsic reward that may exist. Additionally, the baseline Vanilla A3C method fails completely in

the "sparse" and "very sparse" setting.

Figure 15: Results of ICM-A3C in the VizDoom environment with varied reward densities, dense(left) to very

sparse(right), tested against two baseline algorithms, ICM(pixels)+A3C and Vanilla A3C

One shortcoming of the formulation of curiosity as implemented in the ICM is that in some situations an

agent may be able to cause stochastic responses from the environment to manifest as a result of its own actions.

The authors noted the problem as it was encountered in further research following the paper. This problem is

addressed in both solutions described below.

23

6.3.2 Exploration by Random Network Distillation, 2018

In 2018, Burda et al. [17] proposed a simple method for encouraging exploration which demonstrably solved two

problems experienced by methods proposed previously. First, the potential for being ’trapped’ by stochastic

elements - especially those controlled by the agent, a problem experienced by [16] - and second, the issue of

scalability which becomes a problem for methods such as pseudo counts (e.g. [11]) or information gain (e.g. [5]),

which becomes a significant challenge when the state space, or state-action space, is very large. The method

proposed in [17] titled Random Network Distillation augments the reward function by generating a numerical

reward for the agent at each time step t proportional to difference between the outputs of two artificial neural

networks, given the an input vector representing the current state st. The two networks are called the predictor

network, f̂~✓ : S ! R
k, and the target network f : S ! R

k. Before training, the weights for both the target

network and the predictor network are randomly initialised. During training, the weights of the target network

remain fixed, while the weights of the predictor network are iteratively updated (usually by means of a gradient

computation as in MCDP) to better mimic the target network. If the state information for st is captured (either

completely or partially) in the vector ~x at time t, then at each time step the loss function is the MSE of the

output of the two networks:

LRND = ||f̂~✓(~x)� f(~x)||2 (33)

This process distills a randomly initialised neural network into a trained one. The optimization problem is then

exactly a supervised learning problem where the labels are simply produced by the static target network. This

method works well in practice since neural networks typically have lower prediction errors on examples similar

to those they have been trained on [17]. The authors demonstrate this distillation mechanism using the MNIST

data set, where they train a predictor network to mimic a randomly intialised target network given training data

consisting of the instances of the zero digit class, as well as instances from a second target class of digits from

1-9. During training the number of images of the zero digit are held constant, serving as the ’frequently observed

state’, and the number of the images from the second digit in the training set, representing the lesser-visited

state, are varied from 0 to ⇡5500. The network performance of the predictor network is then validated using the

remaining instances of the second, lesser-seen digit. The results, illustrated in figure 16, show the MSE between

the outputs of the predictor and target networks decreases with the number of lesser-seen digit instances added

to the training set, asymptotically approaching 0.

Computing an exploration bonus in this way yields two distinct benefits. First, it is efficient because the

computation of the prediction error is nothing more than a forward pass through a neural network. The forward

pass together with the gradient updates give an algorithm that is able to scale approximately linearly with

the size of the state space depending on how the neural network is constructed. The second benefit is that

any stochastic elements in the environment cease to present the same danger as with previous prediction based

algorithms, even in the case where the agent is able to cause a stochastic manifestation in the environment. This

is because it does not matter whether the next state follows in an ’expected’ way from the current state-action

pair or not since the predictor network is not making next-state predictions using current state vectors, it is

trying to mimic the feature vectors produced by the target network. Therefore even if the agent finds or causes

a stochastic source within the environment, it will very quickly get ’board’ with observing its effects.

24

Figure 16: The MSE between the outputs of the predictor and target networks trained on different classes from

the MNIST data set, as a function of the proportion of instances from the lesser-seen digit class (ranging from

digits 1-9)

Figure 17: Visual representation of the RND algorithm versus next-state prediction (image sourced from

openai.com/blog/reinforcement-learning-with-prediction-based-rewards)

The authors of [17] tested the RND algorithm on various Atari 2600 games including MONTEZUMA’S

REVENGE where the agent managed to explore all 24 rooms in the first level, as well as pass the first level.

The algorithm was tested against two baseline algorithms; Proximal Policy Optimization (PPO), as well as PPO

augmented with a next-state prediction bonus which the authors call ’forward dynamics’. RND shows comparable

or improved performance in all reinforcement tasks on which it was tested, and far superior performance in tasks

where the environment is reward sparse.

Commenting on possible future work, the authors state that even with the exploration bonus generated by

RND the agent struggles to learn long or complicated sequences of actions, and that the PPO + RND agent

25

Figure 18: Rooms in the first level of MONTEZUMA’S REVENGE visited by the reinforcement learning agent

trained using PPO and RND

only passed the first level rarely through chance exploration. Future research, they propose, should investigate

how to equip agents with the ability to learn these sequences more effectively. This is similar to the thesis of the

work in [6] by Barto et al. which could serve as a basis for further research.

6.3.3 Episodic Curiosity Through Reachability, 2019

Most recently, in 2019, Savinov el al. from Google published a paper presenting a model-based method for

encouraging exploration where the agent is able to compute a measure of distance between new observations and

existing observations stored in memory, rewarding the agent for reaching novel states which, in their words, ’take

some effort to reach’. The authors conceptualise curiosity as novelty seeking behaviour but make the observation

that there is a difference between novelty that arises simply from an inability to predict something which hasn’t

been seen before, as is the problem when an agent may cause a stochastic response from the envirnoment, and

the novelty that arises from observing things that are unfamiliar from things you have experienced previously.

The method of episodic curiosity through reachability as outlined in the paper is designed to reward the agent

for the latter.

The Episodic Curiosity (EC) module described in [18], and illustrated in figure 19, is designed to take as

input an observation ot ✓ st at time t, outputting a numerical exploration bonus b which may be negative or

positive. The bonus is then added to the reward from the environment, rt, to create the augmented reward

r̂t = rt + b. The components inside the module are: an embedding network E : O ! R
n, a comparator network

C : Rn
⇥R

n
! [0, 1], an episodic memory buffer M, a reachability buffer and a reward bonus estimation function

B.

The embedding and comparator network function jointly to estimate the so-called within-k-reachability of

one observation oi to another oj , together forming a reachability network R(oi,oj) = C(E(oi), E(oj)). At

each time step an observation oi, in the form of a vector, is fed into the embedding network which produces

a latent-space feature vector ei = E(oi) (as with the ICM). The comparator network then estimates the

probability ci = C(ei, ej) that oi is within k -steps from each oj for j = 1, ..., |M| stored previously in the

memory buffer M. Each ci is stored in a reachability buffer until the M th (final) within-k-reachability probability

is computed. Then, an aggregation function F (c1, ..., c|M|) takes as input all computed probabilities in the

reachability buffer, and uses the 90th percentile to compute the similarity score. The reason the 90th percentile

26

are used as opposed to the max(c1, ..., c|M|) is because, in practice, taking the maximum score as representative

of the most similar state was observed to be susceptible to outlier-related errors. Finally, the curiosity score is

computed as b = B(M, ei) = ↵(� � F (c1, ..., c|M|)) where ↵,� 2 R are hyperparameters of the method. If the

computed score b is greater than some threshold bnovelty, the feature vector E(oi) is added to the memory buffer

M. Additionally, to avoid memory and performance problems, when a new observation’s feature vector is added

to the memory buffer, a previously stored vector is selected at random and deleted.

Figure 19: An illustration of the episodic curiosity module as described in [18]

Notice that in a finite state space one could compute the steps required to move from one state to another by

representing the state space as a weighted graph, in which case there would be no need to use a neural network

to estimate the distance between pairs of observations. In large, continuous state spaces however, a function

approximator is required. In order to train the reachability network to accurately approximate steps between

observations the authors found that one of two methods may be used. One may allow the agent to sample

trajectories from the environment before playing the game and create a labelled data set for training the network.

Alternatively, one may train the network online while the tasks is being performed by optimising iteratively

every finite number of steps.

The EC module was used in conjunction with PPO, and tested in various 3D, visually rich environments

including VizDoom and DMLab. As in [16] the tests were conducted with varied reward-density settings, from

very-sparse to dense, against several baseline algorithms including the PPO + ICM algorithm developed by

[16] as well as a standard PPO algorithm, which relied only ✏-greedy exploration only. The EC + PPO agent

exhibited extensive explorative behaviour, and in the total absence of explicit rewards was found to cover 4 times

more area (measured in discrete (x, y) coordinates) than the baseline PPO + ICM agent. Results of experiments

for different reward densities are illustrated in figure 20.

PART C: Experiment

In this final section, results of an attempt to use the random network distillation method along with DQN to

solve the classic toy problem Mountain Car are presented.

27

Figure 20: Results from testing the EC module with PPO. Explicit rewards as a function of training steps in

VizDoom.

7 Problem: Mountain Car

Mountain car is a simple reinforcement learning task that is notoriously tricky to solve without re-engineering

the reward function or employing an exploration method beyond stochastic action. The task is simple, a car

sits in a 2-dimensional valley with a mountain on either side. The agent must get the car to reach a flag at

the top of a hill on the right using only three actions: push left, push right, do nothing. The agent receives -1

reward for each time step that elapses before it reaches the top of the hill, and a reward of +0.5 when it does. If

200 time steps pass without the car reaching the top, the game is over. The tricky part is that the car does

not have enough power to drive straight up the either of the two mountains, so it must perform a coordinated

sequence of actions in order to roll the car back and forth, up and down each of the slopes until it gains enough

momentum to reach the top of the rightmost peak. The state space for the task consists of two continuous

variables v 2 [�0.07, 0.07] and x 2 [�1.2, 0.6], representing horizontal position and velocity, respectively. Since

the environment is reward sparse, solving the task will require intrinsic motivation to explore the state space,

which should encourage the agent to manoeuvre the car further and further up the slopes, ultimately reaching

the flag.

Figure 21: An illustration of the Mountain Car problem

7.1 Algorithm: DQN + RND

In order to solve the Mountain Car task, a simplified variation of the DQN algorithm was used with RND. At

each time step t the agent takes an action in the environment (left, right or nothing) and observes a new state

st+1 and extrinsic reward ret . The intrinsic reward rit is then computed as the difference between the output of a

predictor network and a target network, according to equation (33). The total reward is computed as rt = ret + rit

and the transition (st, at, rt, st+1) is added to a memory buffer B as per the standard DQN algorithm. Then each

time step a random minibatch of samples is drawn from B and for each sample drawn, a gradient descent step is

performed for the action-value function approximator Q✓i according to equation (32) and a a gradient descent

28

step is performed for the RND predictor network according to ✓P ✓P + 2↵||f̂✓P (st)� f(st)||r✓P f̂✓P (st). The

algorithm is given below in full.

Algorithm Deep-Q Learning + Random Network Distillation

initialise replay memory buffer B to capacity N;

initialise action-value function approximator Q✓i with random weights;

create a deep copy of Q✓i to use as the target model; Q✓i�1 ;

initialise RND target network f with random weights;

initialise RND predictor network f̂✓P with random weights;

for episode=1, M do

reset environment and set initial state s0;

for t=1,T do

with probability ✏ select random action at;

otherwise select at = maxa Q(st, at; ✓i);

execute action at in the environment and observe extrinsic reward ret+1 and state st+1;

compute intrinsic reward as rit = ||f̂✓P (st)� f(st)||2;

set combined reward as rt = ret + rii;

store transition (st, at, rt, st+1) in B ;

sample random minibatch of transitions (sj , aj , rj , sj+1) from B ;

for each transition in minibatch do

set yj =

8
><

>:

rj ifsj+1is terminal

rj +maxa0 Q(sj+1, a0; ✓i�1) ifsj+1is non-terminal
;

perform a gradient descent step (yj �Q(sj , aj ; ✓i)) according to equation (32);

perform a gradient descent step for the RND predictor network:

✓P ✓P + 2↵||f̂✓P (st)� f(st)||r✓P f̂✓P (st)

end

reset Q✓i�1 = Q✓i after every K time steps;

end

end

7.2 Results

The algorithm was run for 300 episodes with the intrinsic reward, as well as without the intrinsic reward. The

results are shown in figure 22. In the case where the intrinsic reward was used, the agent explores without

attaining any explicit reward for approximately 100 episodes initially, attaining only intrinsic reward. At about

the 100th time step a rise in the average intrinsic reward preempts a rapid increase in the average extrinsic

reward as the car makes it to the top of the hill for the first time. Where after both the intrinsic and extrinsic

rewards shoot up rapidly. In the case where no intrinsic reward is used, the agent relies only on ✏-greedy action

selection and eventually figures out how to climb to the top of the hill after approximately episode 230.

29

Figure 22: Mean returns generated from training an agent on the Mountain Car task, using the DQN algorithm

augmented by Random Network Distillation

The intrinsic reward generated by the RND module has a positive effect in encouraging curious behaviour,

even in the simple Mountain Car environment and clearly outperforms the standard DQN algorithm. The drop

in extrinsic and intrinsic reward at approximately episode 250 is perhaps the agent trying to figure out a more

efficient way of attaining the goal through further exploration. The average reward quickly increases again at

around episode 300 - if left to continue the agent would eventually learn the most efficient action sequence for

ascending the mountain.

8 Conclusions & Possible Future Work

This report has outlined the mathematical framework for the reinforcement learning problem, as well as the

algorithmic approach to solving it using Generalised Policy Iteration (GPI). Two modern algorithms used

to solve the problem of generalisation to continuous state spaces were covered, along with a mathematical

analysis of the first method, Monte Carlo Policy Differentiation (MCPD). Section B covered a brief history of

the development of curiosity-driven reinforcement learning algorithms, followed by a detailed examination of

the three most recent algorithms: the Intrinsic Curiosity Module (ICM) which made use of next-state feature

prediction, Random Network Distillation (RND) which indirectly modelled environment dynamics by distillation

a randomly initialised neural network, and finally the Episodic Curiosity (EC) module which estimated the

within-k-step reachability of new observations from observations in memory. The latter two methods solved the

problem of agent-elicited stochastic response from the environment, and all three were robust under tests in

high-dimensional state spaces under varied reward densities. Finally, Section C demonstrated the effectiveness of

RND, used in combination with DQN to solve the classic reward-sparse Mountain Car Problem.

In order to build on the work explored in this paper, and the three main algorithms in particular, it appears

30

that solutions to the problems arising from an agents inability to learn sequences of actions, what Barto et al.

(2004) called ’skills’ or ’options’, should be explored. If an agent is unable to learn actions that are not directly

made available to it by the programmer, there will naturally be a limit to solutions involving intrinsic reward

that are limited in this way - this was demonstrated by Burda et al. (2018) in [17] when the agent was tested in

MONTEZUMA’S REVENGE. Additionally, in taking direction from biological systems and nature, it appears

that the argument made by Barto et al. (2004) is supported by what we observe in the natural world, which is

that animals and human beings, intrinsically motivated to explore, gradually develop skills made up of sequences

of smaller actions. A young animal or child will continue to develop more complicated skills and learn how to

adapt them to various categories of tasks in order to achieve specific goals, or to satisfy the urge for further

exploration. The foundations for implementing such ideas in the domain of reinforcement learning have been

laid in [6] and a fruitful avenue of further research may be to attempt to develop those ideas and extend them to

the case of continuous state spaces and deep reinforcement learning.

31

References

[1] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[2] Mnih et al. Playing Atari with Deep Reinforcement Learning. Deep Mind, 2013.

[3] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural controllers.

In From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive

Behavior, pages 222–227, Cambridge, MA, 1991. MIT Press.

[4] J. Schmidhuber. Curious Model-Building Control Systems In Proc. International Joint Conference on Neural

Networks, Singapore, volume 2, pages 1458-1463. IEEE, 1991.

[5] J. Schmidhuber and J. Storck. Reinforcement driven information acquisition in non-deterministic environments

Technical report, Fakultat fur Informatik, Technische Uni- versit at Munchen, 1993.

[6] A.G.Barto, S.Singh, and N.Chentanez. Intrinsically motivated learning of hierarchical collections of skills. In

Proceedings of the 3rd International Conference on Developmental Learning (ICDL ’04), LaJolla CA, 2004.

[7] A.G.Barto, S.Singh, and N.Chentanez. Intrinsically Motivated Reinforcement Learning. In Advances in

Neural Information Processing Systems 17: Proceedings of the 2004 Conference, Cambridge MA, 2005. MIT

Press.

[8] P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computational approaches.

Frontiers in neurorobotics, 2009. 1, 9.

[9] Satinder Singh, Richard L. Lewis, Andrew G. Barto, Fellow, IEEE, and Jonathan Sorg. Intrinsically Motivated

Reinforcement Learning: An Evolutionary Perspective. IEEE TRANSACTIONS ON AUTONOMOUS

MENTAL DEVELOPMENT, vol. 2, no. 2, June 2010.

[10] Lopes, M., Lang, T., Toussaint, M. and Oudeyer, P.Y. Exploration in Model-based Reinforcement Learning

by Empirically Estimating Learning Progress. In Advances in neural information processing systems (pp.

206-214), 2012.

[11] Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D. and Munos, R. Unifying count-based

exploration and intrinsic motivation. In Advances in Neural Information Processing Systems (pp. 1471-1479),

2016.

[12] Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F. and Abbeel, P. VIME: Variational

Information Maximizing Exploration. In Advances in Neural Information Processing Systems (pp. 1109-1117),

2016.

[13] Stadie, B.C., Levine, S. and Abbeel, P. Incentivizing exploration in reinforcement learning with deep

predictive models. arXiv preprint arXiv:1507.00814, 2015.

[14] Ostrovski, G., Bellemare, M.G., van den Oord, A. and Munos, R. Count-Based Exploration with Neural

Density Models. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp.

2721-2730), 2017.

32

[15] Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T. and Efros, A.A., 2018. Large-Scale Study of

Curiosity-Driven Learning. arXiv preprint arXiv:1808.04355, 2018.

[16] Pathak, D., Agrawal, P., Efros, A.A. and Darrell, T. Curiosity-driven exploration by self-supervised

prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

(pp. 16-17), 2017.

[17] Burda, Y., Edwards, H., Storkey, A. and Klimov, O. Exploration by random network distillation. arXiv

preprint arXiv:1810.12894, 2018.

[18] Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T. and Gelly, S. Episodic

curiosity through reachability. arXiv preprint arXiv:1810.02274, 2019.

9 Appendix A: Summary of Notation

t discrete time step

T final time step of an episode

at action at t

st state at t (dependant on at�1 and st�1)

rt reward at t (dependant on at�1 and st�1)

Rt return (cumulative, discounted reward) following t

Rn
t n-step return

⇡ policy

⇡(s, a) probability of taking action a under a stochastic policy

S set of all non-terminal states

S
+ set of all states, including the terminal state

A(s) set of all possible actions in state s

P
a
ss0 probability of transitioning from state s to s0 under action a

R
a
ss0 expected immediate reward on transition from s to s0 under action a

V ⇡(s) value of state s under policy ⇡

V ⇤(s) value of state s under an optimal policy

V, Vt estimates of V ⇡(s) or V ⇤(s)

Q⇡(s, a) value of taking action a in state s under policy ⇡

Q⇤(s, a) value of taking action a in state s under an optimal policy

Q,Qt estimates of Q⇡(s) or Q⇤(s)

~✓ vector of parameters underlying V , Q or ⇡

~�s vector of features representing state s

� discount factor parameter

↵,� step-size parameters

✏ probability of selecting a random action under an ✏-greedy policy

33

import torch
import torch.nn
import torch.nn.functional as F

class Network(torch.nn.Module):
 def __init__(self,n_input,n_output,n_hidden):
 super(Network, self).__init__()
 self.n_input = n_input
 self.n_output = n_output
 self.n_hidden = n_hidden

 self.layer_1 = torch.nn.Linear(n_input,n_hidden,'linear')
 self.layer_2 = torch.nn.Linear(n_hidden,n_hidden,'linear')
 self.layer_3 = torch.nn.Linear(n_hidden,n_output,'linear')

 def forward(self,x):
 y = F.relu(self.layer_1(x))
 y = F.relu(self.layer_2(y))
 y = self.layer_3(y)
 return y

class RND:
 def __init__(self,n_input,n_output,n_hidden, learning_rate=0.0001):
 self.target_network = Network(n_input,n_output,n_hidden)
 self.model_network = Network(n_input,n_output,n_hidden)
 self.optimizer = torch.optim.Adam(self.model_network.parameters(),lr=learning_rate)

 def get_reward(self,x):
 y = self.target_network(x).detach()
 y_pred = self.model_network(x)
 reward = torch.pow(y_pred - y,2).sum()
 return reward

 def update(self,Return):
 Return.sum().backward()
 self.optimizer.step()

import copy
from collections import deque
import numpy as np
import random
from RND import RND
import torch
import torch.nn.functional as F

class Q_Network(torch.nn.Module): # Set up Q network
 def __init__(self,n_input,n_output,n_hidden):
 super(Q_Network, self).__init__()
 self.n_input = n_input
 self.n_output = n_output
 self.n_hidden = n_hidden

 self.layer_1 = torch.nn.Linear(n_input,n_hidden,'relu') # Input and hidden layer
 self.layer_2 = torch.nn.Linear(n_hidden,n_output,'linear') # Hidden layer and output layer

 def forward(self,x): # forward pass through the network
 y = F.relu(self.layer_1(x))
 y = self.layer_2(y)
 return y

class DQN_Agent:
 def __init__(self, env, gamma, buffer_size):
 # Environment setup
 self.env = env # Environment
 acts = env.action_space
 obs = env.observation_space

 # Q Network
 self.model = Q_Network(obs.shape[0],acts.n,64) # action-value function
 self.target_model = copy.deepcopy(self.model) # copy of action-value function for training
 self.optimizer = torch.optim.Adam(self.model.parameters(),lr=0.001) # Adam optimiser for gradient descent
 self.gamma = gamma # discount factor
 self.batch_size = 64 # Size of minibatch
 self.buffer_size = buffer_size # Size of buffer for storing transition tuples
 self.Qupdate_target_step = 500 # Number of steps to reset copy of Q network
 self.replay_buffer = deque(maxlen=buffer_size) # Buffer for storing transition tuples

 # RND Network
 self.rnd = RND(obs.shape[0],64,124) # random netowork distillation module

 # Hyperparaeters
 self.Q_step_counter = 0 # keep track of steps to reset copy of Q network
 self.steps = 0 # keeping track of total steps
 self.epsilon_low = 0.05 # minimum value for epsilon
 self.epsilon_high = 0.9 # maximum value for epsilon
 self.epsilon = self.epsilon_high # Initial value for epsilon
 self.decay = 200 # Decay rate for epsilon

 def run_episode(self):

 obs = self.env.reset() # Reset the environment and get the initial state
 sum_r = 0 # keep track of total explicit return
 sum_tot_r = 0 # keep track of combined reward (implicit + explicit)
 loss_t = 0 # keep track of loss

 for t in range(200):
 self.steps += 1
 self.Q_step_counter = self.Q_step_counter + 1

 state = torch.Tensor(obs).unsqueeze(0) # current state
 new_state, reward, done, info, action = self.step(state) # take a step in the environment
 sum_r = sum_r + reward # add to explicit reward total
 reward_i = self.rnd.get_reward(state).detach().clamp(-1.0,1.0).item() # compute intrinsic reward
 combined_reward = reward + reward_i # compute combined reward
 sum_tot_r += combined_reward # add to combined reward total

 self.replay_buffer.append([obs,action,combined_reward,new_state,done]) # add tuple to buffer
 loss_t += self.update_model() # update the Q_Network and RND module
 obs = new_state # next state

 if (self.Q_step_counter > self.Qupdate_target_step):
 self.target_model.load_state_dict(self.model.state_dict()) # reset copy of Q network
 self.Q_step_counter = 0 # reset Q step counter
 print('updated target model')
 if done:
 break

 return sum_r, sum_tot_r, loss_t/self.steps

 def step(self, state):
 Q = self.model(state) # Get Q values for actions given current state
 num = np.random.rand() # select a random float in [0,1]
 self.epsilon = self.epsilon_low + (self.epsilon_high-self.epsilon_low) * (np.exp(-1.0 * self.steps/
self.decay)) # update epsilon
 if (num < self.epsilon):
 action = torch.randint(0,Q.shape[1],(1,)).type(torch.LongTensor) # take a random action
 else:
 action = torch.argmax(Q,dim=1) # take action with max Q-value

 new_state, reward, done, info = self.env.step((action.item()))
 return new_state, reward, done, info, action

 def update_model(self):
 self.optimizer.zero_grad() # reset gradients to zero (pytorch accumulates graidents otherwise)

 # Get training instances from buffer
 num_tuples_in_buffer = len(self.replay_buffer) # number of tuples stored in buffer so far
 num_samples = np.min([num_tuples_in_buffer,self.batch_size]) # number of samples to optimise with
 samples = random.sample(self.replay_buffer, num_samples) # minibatch of samples for optimisation

 S0, A0, R1, S1, D1 = zip(*samples)
 S0 = torch.tensor(S0, dtype=torch.float) # states at t
 A0 = torch.tensor(A0, dtype=torch.long).view(num_samples, -1) # actions
 R1 = torch.tensor(R1, dtype=torch.float).view(num_samples, -1) # rewards
 S1 = torch.tensor(S1, dtype=torch.float) # states at t+1
 D1 = torch.tensor(D1, dtype=torch.float) # terminal (boolean)

 # Update predictor network in RND module
 implicit_reward = self.rnd.get_reward(S0) # implicit reward
 self.rnd.update(implicit_reward) # optimise RND

 # Update Q network
 target_q = R1.squeeze() + self.gamma*self.target_model(S1).max(dim=1)[0].detach()*(1 - D1) # target for Q
update
 policy_q = self.model(S0).gather(1,A0) # Q values for all states and actions chosen in sample
 L = F.smooth_l1_loss(policy_q.squeeze(),target_q.squeeze()) # loss function for Q update
 L.backward() # compute gradients

 self.optimizer.step() # update gradients
 return L.detach().item() # return Q loss

	Introduction
	PART A: Theory
	The Full Reinforcement Learning Problem
	The Agent-Environment Interface
	Rewards & Returns
	The Markov Property & Markov Decision Processes
	Value Functions & The Bellman Optimality Equations
	Elementary Policies & the Exploration vs. Exploitation Problem

	Generalised Policy Iteration
	Modern Reinforcement Learning Algorithms
	Monte Carlo Policy Differentiation
	Deep-Q Learning
	Exploratory Behaviour in MCDP and DQN

	Curiosity Driven Reinforcement Learning
	Curiosity, Novelty and Memory
	A Brief History of Curiosity and Exploration
	Recent Developments
	Curiosity-Driven Exploration by Self-Supervised Prediction, 2017
	Exploration by Random Network Distillation, 2018
	Episodic Curiosity Through Reachability, 2019

	Problem: Mountain Car
	Algorithm: DQN + RND
	Results

	Conclusions & Possible Future Work
	Appendix A: Summary of Notation

