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Abstract

In 1982 John Hopfield proposed a computational model of associative memory in biological neural networks,

now referred to as Hopfield networks, catalysing a resurgence of academic interest in artificial neural networks

which persisted over the subsequent three decades. The model proposed by Hopfield, which is part of a

now broader class of models called energy based models, is capable of both storing and retrieving patterns -

functionality which is of great importance in the field of machine learning. In this research report we explore

the evolution of the Hopfield model, examining the mathematical properties each of the major variants and

confirming the theoretical results with computational simulations. Of utmost importance is the most recent

work published on Hopfield networks which illustrates the mathematical equivalence between the update rule

of modern Hopfield networks and the attention mechanism used in modern transformer models. We end the

report by examining the results of some basic experiments which illustrate the properties and functionality of

modern Hopfield networks applied to the MNIST data set, namely, pattern storage, retrieval and separation.

1 Early Hopfield Networks

1.1 Invention

In his now famous 1982 paper titled "Neural Networks and Physical Systems With Emergent Collective Computa-

tional Abilities" [1] John Hopfield proposed a simple model of associative memory in biological neural networks -

the ability of the brain to access memories given only partial reference information - which he suggested could also

be implemented as a hardware-based content addressable memory (CAM) system1. The simple model proposed

by Hopfield in [1], now known as a Hopfield network, is part of a broader class of models called ’energy-based

models’ which derive their properties from a global energy function. In the paper, Hopfield proposed the idea of
1As opposed to random access memory (RAM), where in order to access data the OS provides the address where the data is

stored, content addressable memory (CAM), also known as associative memory, executes search queries given the data itself and

returns a memory address. CAM is typically implemented as a hardware-based search engine (it’s the hardware analogue of an

associative array or hash map in certain programming languages) and is used in situations where high-speed associative search is

required, for example in routing tables.
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’memories’ as local minima of the energy function governing the dynamics of the system defined by the collective

properties of the model. The high-level idea was that memories, corresponding to certain states of the system,

could be retrieved at a later time by beginning in a similar state (i.e. given partial information) and evolving

the system according to an update rule so as to move ’downhill’ in energy until the desired state (memory)

corresponding to an energy minima is reached2.

Formally, the associative memory model described in [1] is defined by a set of d artificial neurons, termed binary

threshold units, where the activation of each neuron may take on a value of -1 (not firing) or 1 (firing at maximum

rate) at any given time3. We will represent the state of the network at some time t as as ξt ∈ {−1, 1}d. A

network is defined by it’s adjacency/weight matrix W ∈ Rd×d, where the (i, j)th entry, wij , represents the

strength of the connection between neurons i and j, and a threshold vector b ∈ Rd, where bi is the threshold

value for the ith neuron. At any time t we can compute the incoming stimulus received by the ith neuron as the

weighted sum of the activations of all of the neurons adjacent to it in the network, minus its threshold value:

Hi(t) =

d∑
j=1

wi,jξ
t
j − bi (1)

where ξtj is the activation value of the jth neuron in the network at time t. At each time t, the activation value

for each neuron i, i = 1, . . . , d, in the network is updated according to the binary threshold update rule4:

ξt+1
i = sgn(Hi(t)) (2)

where the sgn function assigns +1 to input values which are positive or zero, and -1 to input values which are

negative. The updates to each individual neuron may happen at some random rate, but in practice updates to

each neuron occur one at a time in a random sequence. Importantly, we note that updates may also happen in

parallel, according to:

ξt+1 = sgn(Wξt − b) (3)

By definition of the update rule (1) the early Hopfield network may be thought of as a special type of recurrent

neural network (RNN) - see Figure 1-A for an illustration - although it differs from modern RNNs (e.g. long

short-tern recurrent neural networks) in two significant ways. Firstly, the network only takes external input

initially (the starting state), where for each subsequent iteration the network only performs updates based on

it’s current state. Secondly, network updates are typically not performed synchronously in practice because

synchronous updates can lead to periodic trajectories in the phase space - more on this below5.

Hopfield goes on to show in [1] that in the special case where W is symmetric, that is, wij = wj,i for all

i, j = 1, 2, . . . , d, which is not the case in most well-known RNNs, then the state of the system could be described
2Together with the backpropogation algorithm, Hopfield networks were one of the main reasons for the resurgence of academic

interest in artificial neural networks in the 1980’s, mainly because Hopfield, being a reputable physicist, described his model in

terms of the dynamics of physical systems.
3The original Hopfield paper [1] uses binary values {0, 1}.
4hence the term ’binary threshold units’ used to describe theses particular artificial neurons.
5Additionally, there is no evidence to suggest that the firing of biological neurons in the brain is synchronised [1].
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Figure 1: An illustration of a Hopfield network. A Illustrates the recurrent nature of the Hopfield network as

the update rule is applied, and B illustrates a Hopfield network with symmetric weights/bi-directional edges

connecting the artificial neurons.

in terms of a global energy function which decreases monotonically as the update rule defined by equation (2)

is applied recurrently and asynchronously to the neural activations of the network. See Figure 1-B for an

illustration of a Hopfield network with symmetric weights. The energy function proposed by Hopfield has the

form6:

E(ξ) = −1

2
ξTWξ + ξTb (4)

= −1

2

d∑
i=1

d∑
j=1

wi,jξiξj +

d∑
i

ξibi (5)

We will go on to show in a section below that if we begin in an an arbitrary state, then update the activation of

each neuron in the network one by one according to the binary threshold update rule (2), that the resulting

sequence of states will correspond to a sequence of energy values which decreases monotonically to an energy

minima. Furthermore we will show that, given W has certain properties, these energy minima necessarily

correspond to stable states, or fixed points, in phase space, defined as ξt+1 = ξt, which in Hopfield’s language

are ’memories’ stored by the network. As an example, Figure 2 shows an illustration of the binary threshold rule

applied to updating the activation of a single neuron in a simple Hopfield network where the threshold values

are zero for each neuron, causing the state of the system to stabilise at a local energy minimum, making the

binary pattern represented by the neural activations (on the right) a stored state, or memory, of the network.

The last major component of the Hopfield model to consider is the discuss is the process encoding/storing binary

patterns. Hopfield proposed a simple, online rule for setting the weights of the network in such a way as to

memorise a set of N binary patterns {xi}Ni=1, where each xi is a binary vector of length d, which we will express

in matrix form as X = (x1, . . . ,xN ), which has the dimensions N × d. The online rule proposed by Hopfield for

setting the weights in W is simply the sum of the outer products of each pattern:

W = XXT =

N∑
k=1

xkx
T
k (6)

Or, equivalently, for a single entry in the weight matrix we can write:
6However, Hopfield neglects to include the bias terms in his original paper [1].
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Figure 2: An example of the binary threshold update rule applied to a Hopfield network, causing it to settle at a

local minima of the energy function.

wij =

N∑
k=1

xki x
k
j (7)

Where xki is the ith element of the kth pattern vector. Equation (7), known as the Hebbian learning rule 7, gives

us a symmetric weight matrix W - this will be important in proving the convergence of the network later on.

To see that, on average, a stored pattern corresponds to a local energy minima, Hopfield makes the following

argument in [1]. Suppose we want to store N randomly sampled patterns {x}Ni=1, where each bit in each pattern

is either +1 or −1 with equal probability. Then, suppose the network is in a state equivalent to the k′th stored

pattern. We would then have the incoming stimulus to neuron i being:

Hk′

i =

d∑
j=1

wijx
k′

j =

N∑
k=1

xki

 d∑
j=1

xk
′

j x
k
j

 = xk
′

i d+
∑
k 6=k′

xki

 d∑
j=1

xk
′

j x
k
j


We observe that the k = k′ term gives a constant signal, d, which is the expectation of the quantity Hk′

i , while

the expectation of contribution coming from the k 6= k′ terms (the so-called noise terms) is essentially 0, since

the patterns are randomly sampled. We therefore get:

〈Hk′

i 〉 ≡ xk
′

i d ≈
d∑
j=1

wijx
k′

j

which is clearly positive when xk
′

i = 1 and negative when xk
′

i = −1, which means that if the state of the network

is equivalent to pattern k′, and the bias threshold is zero, then on average the state should be stable. Based on

this, one would intuitively guess that the stability of stored patterns depends on a number of factors including

the number of states one attempts to store in the network, as well as the correlation between states - we will

explore this in detail in the sections below.

To illustrate the theory described above we implement a classic Hopfield net and demonstrate the storage and

retrieval of black and white images of the Simpsons 8 - see Figure 3 for a sample of the results. The code for the

traditional Hopfield net may be found in Appendix C. The energy corresponding to the updates of the model
7Introduced by Donald Hebb in his 1949 book The Organization of Behavior the Hebbian learning rule, often summarised by

the colloquial adage "Neurons that fire together, wire together", states in essence that the strength of the connection between two

neurons should be proportional to the product of their activations.
8I am reproducing the examples from the blog ml-jku.github.io/hopfield-layers/, however, I wrote all code and processed

all the images independently.
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which produced the results in Figure 3 may be seen in Figure 4 - clearly the stored pattern (Homer) corresponds

to an energy minima.

Figure 3: An example of a traditional Hopfield network being trained to memorise and retrieve a binary pattern

given only partial information.

Figure 4: A plot illustrating the decrease in energy when applying the update rule to nodes in a traditional

Hopfield network in order to the retrieve the Homer pattern seen in Figure 3

The dynamics of the system arising from the traditional Hopfield model described above are stochastic in nature

and depend significantly on a few key elements: the manner in which the neurons of the network are updated,

the properties of the weight matrix, the number of patterns stored, the degree of correlation between stored

patterns, and the degree to which starting states differ from the stored states which one wishes to retrieve. As

we will see, the traditional Hopfield model has very limited storage capacity and is susceptible to large retrieval

error rates when the stored patterns are highly correlated. First, we go on to prove some convergence properties

of the traditional Hopfield model, whereafter we will examine it’s storage capacity, showing how it is highly

dependant on the degree of correlations between patterns.

1.2 Convergence Properties

A few key convergence properties of the traditional Hopfield model have been proved over the years ([1], [5], [4]),

the most important of which may be summarised as follows. If f = (W,b) is a Hopfield network then:

1. If the neural activations of f are updated asynchronously, and ifW is symmetric with non-negative diagonal

elements, then f will always converge to a stable state.

2. If the neural activations of f are updated in parallel (i.e. synchronous updates), and if W is symmetric,

then f will converge to either a stable state, or a limit cycle of length 2.
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3. If the neural activations of f are updated in parallel (i.e. synchronous updates), with W being anti-

symmetric and b = 0, then f will always converge to a limit cycle of length 4.

We will prove each of these results in turn, but first it is helpful to have them illustrated with three simple

examples. Consider two simple Hopfield networks, f1 and f2, defined by the weight matrices W1,W2 below, each

having zero-valued bias vectors.

Ŵ1 =

 0 −1

−1 0

 Ŵ2 =

 0 1

−1 0


Let Mfi denote the set of stable states of some Hopfield network fi. Then, noticing that W1 is symmetric, it can

be shown that if the neural activations of f1 are updated in an asynchronous manner, then the network will

always converge to a a stable state in Mf1 = {(−1, 1), (1,−1)}. On the other hand, if the neural activations

of f1 are updated in a parallel manner, according to equation (3), it can be shown that the state of the

network will either converge to a state in Mf1
or to a limit cycle of length 2, where the state oscillates between

states in the set {(1, 1), (−1,−1)}. These two cases correspond to convergence properties (1) and (2) above.

Then, noticing that W2 is an anti-symmetric matrix, it can be shown that if the neural activations of f2 are

updated in a parallel manner, Mf2
= ∅ and that the state of the network will oscillate between the states in

{(1, 1), (−1, 1), (−1,−1), (1,−1)}, that is, a limit cycle of length 4. This corresponds to property (3) above. We

now go on to formally prove the first two convergence properties listed above. The following theorem is adapted

from [1] and [4].

Theorem 1. Let W be a symmetric matrix with non-negative diagonal elements and b be a threshold vector

defining an traditional Hopfield network f = (W,b). If the neural activations of f are updated asynchronously,

the sequence of energy values corresponding to the resulting sequence of states will decrease monotonically.

Furthermore, since the energy of f is bounded from below, the sequence will converge and the network will reach

a stable state (i.e. there are no limit cycles in the phase space).

Proof. Let ∆E = E(ξt+1)−E(ξt) be the difference in energy between the state of the network at time t+ 1 and

time t, and let ∆ξm denote the difference in the activation value of the mth neuron after applying the binary

threshold rule (2) at time t, then we have that:

∆ξm =


0, if ξtm = sgn(Hm(t))

−2, if ξtm = 1 and sgn(Hm(t)) = −1

2, if ξtm = −1 and sgn(Hm(t)) = 1

(8)

Now, by assumption the neurons of the network are updated in an asynchronous manner (i.e. one neuron at a

time in random order). Suppose an arbitrary neuron m is updated at time t, from ξm to ξ′m, then ∆ξm = ξ′m−ξm
and the resulting energy difference would be:

∆E = −1

2

 d∑
i=1
i 6=m

wi,mξiξ
′
m −

d∑
j=1
i 6=m

wm,jξmξj + wm,m(ξ′2m − ξ2m)

+ ∆ξmbm (9)
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= −1

2

2∆ξm

d∑
i=1
i 6=m

wi,mξi + wm,m(ξ′2m − ξ2m)

+ ∆ξmbm (since W is symmetric) (10)

= −1

2

[
2∆ξm

d∑
i=1

wi,mξi + wm,m(ξ′2m − ξ2m)− 2∆ξmwm,mξm

]
+ ∆ξmbm (11)

= −1

2

[
2∆ξm

d∑
i=1

wi,mξi + wm,m(ξ′2m − 2ξmξ
′
m + ξ2m)

]
+ ∆ξmbm (12)

= −∆ξmHm −
1

2
wm,m∆ξ2m (13)

Therefore, since ∆ξmHm ≥ 0, by equation (8), and since wm,m ≥ 0, by assumption, we have shown that ∆E ≤ 0

for every m. Hence, the sequence of states resulting from the recurrent application of the binary threshold

update rule (2) results in an energy sequence which is monotonically decreasing. Finally, it is easy to see that

since the values in W and b are finite, that the energy of f is bounded from below, which means the sequence of

energy values will converge on a minimum. This in turn implies that the network will reach a stable state, since

no update to any neuron will occur if it causes an increase in energy. This completes the proof of convergence

property (1).

Having now shown that any Hopfield network defined by a symmetric adjacency matrix with non-negative

diagonal entries will converge to a stable state if updated in an asynchronous manner, we would like to better

understand how updating the neurons in parallel leads to a limit cycle of length 2. To this end, we adapt an

elegant proof presented in [4]. But, first, we need to prove an intermediate result, showing that performing

parallel updates to a network of the type described above is equivalent to performing asynchronous updates in a

larger network with similar properties.

Lemma 2. Let W be an arbitrary symmetric weight matrix and b be a threshold vector defining an traditional

Hopfield network f = (W,b), with f having d neurons. Let f̂ = (Ŵ , b̂) be a new Hopfield network derived from

f , with:

Ŵ =

 0 W

W 0

 b̂ =

b

b


Then, there exists an ordering in which the neural activations of f̂ may be updated asynchronously which is

equivalent to updating the neural activations of f in parallel (as per equation (3)).

Proof. We first begin by noting that f̂ is a bipartite graph with 2d neurons, and that Ŵ is a symmetric matrix

having zero-valued diagonal elements. Let S1 and S2 be the partite sets of f̂ , containing the neurons 1, . . . , d

and d+ 1, . . . , 2d respectively. It is clear from the structure of Ŵ that no two nodes of S1 are connected to one

another, similarly for S2. Notice also that the ith neuron in S1 is incident with a set of edges which have weights

exactly equivalent to those of the edges incident with the (d+ i)th neuron in S2. Now, suppose that the network

f is in some starting state ξ0 and that f̂ is in the starting state (ξ0, ξ0), that is, where neurons 1, . . . , d have

exactly the same activation pattern as neurons d+ 1, . . . , 2d. Then, suppose we update the neurons of f̂ in the

following way. Begin by updating all the neurons in S1 one by one (in any order), whereafter f̂ will be in the

state (ξ1, ξ0). Then, since each neuron in S1 is adjacent only to neurons in S2, updating S1 in this manner is

equivalent to updating all the neurons in f in parallel, whereafter f would be in the state ξ1. After updating
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the neurons in S1, we may update all the neurons in S2 (in any order), after which f̂ will be in the state (ξ1, ξ2).

Again, this is equivalent to performing a second parallel update of the neurons of f , whereafter f would be in

the state ξ2. In this way, updating f̂ in an asynchronous manner is equivalent to updating f in a fully parallel

manner.

We now go on to state and prove a theorem showing that property (2) above holds.

Theorem 3. Let W be an arbitrary symmetric weight matrix and b be a threshold vector defining a Hopfield

network f = (W,b). If the neural activations of f are updated in parallel, according to equation (3), then the f

will either converge to a stable state, or limit cycle of length 2 (i.e. oscillating between two states continuously).

Proof. By Lemma 2 there we can construct a network f̂ from f such that updating the neural activations of

f̂ = (Ŵ , b̂) in an asynchronous manner is equivalent to updating the neural activations of f in parallel. Since

Ŵ is symmetric, having non-negative diagonal entries, by Theorem 1 we know that f̂ will converge to a stable

state (ξ1∗, ξ2∗) corresponding to the two partite sets of neurons S1 and S2. When f̂ reaches a stable state, there

are two cases:

1. ξ1∗ is element-wise equivalent to ξ2∗, in which case f will converge to a stable state which is element-wise

equivalent to ξ1∗.

2. ξ1∗ and ξ2∗ are distinct states, in which case the state of f will oscillate between ξ1∗ and ξ2∗. That is, f

will converge to a limit cycle of length 2.

This completes the proof of convergence property (2).

The proof of convergence property (3), which is similar to that for convergence property (2), will not be covered

here, since in both practice and research most Hopfield networks are typically studied with symmetric weight

matrices, but may be seen in [4]. We will now go on to examine the storage capacity of traditional Hopfield

networks.

1.3 Storage Capacity

Much analysis has been performed on the dynamics of the traditional Hopfield model in order to asses its critical

storage capacity ([3], [6], [10]). The storage capacity of a Hopfield network is measured as the ratio between the

number of binary patterns stored, N , and the number of neurons in the network (or equivalently, the pattern

length), d, combined into a single metric called the load parameter : λ = N
d . Amit et. al were the first to perform

an in depth analysis of the storage capacity of the Hopfield model in 1986 [3], where they added several layers of

complexity to the simple model described above in order to model a spin system (we discuss the analogy of

the Hopfield Network to the Ising model below), which they then analysed both analytically and numerically

using mean field theory (and other tools from statistical mechanics). The results of the analysis conducted and

published in [3] and [10] determined that the storage capacity of a traditional Hopfield network for a retrieval of

patterns free from errors was:

Nc ≈
d

2ln(d)
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And the storage capacity for retrieval of patterns with a small percentage of errors (≈ 1.5%−5%) was determined

to be:

Nc ≈ 0.14d

Where Nc, measured in number of patterns stored, represents the critical storage capacity of the network. These

analytical results have been confirmed by way of a Monte-Carlo simulation, and the results published in several

papers including the original paper by John Hopfield [1], as well as in [6] which builds on the work presented in

[3]. Figures 4 and 5 illustrate the results of a Monte-Carlo simulation replicating the results shown in [6] which

confirm the theoretical results regarding storage capacity.

Figure 5: Results from a Monte-Carlo simulation

of the traditional Hopfield model. Here the pattern

retrieval rate is plotted against the load param-

eter λ = N/d for different values of the overlap

threshold m > m∗, where d = 100 and ρ = 0.15.

Figure 6: Results from a Monte-Carlo simulation of

the traditional Hopfield model. Here the retrieval

rate is plotted against the (100·ρ)% initial error (the

difference between the starting state and the target

state) for different values of the load parameter λ.

The simulation was conducted as follows. We would like to simulate the storage and retrieval of randomly

generated binary patterns in a traditional Hopfield network. In order to do this we first need to define what a

successful retrieval means, and thus how we measure retrieval error. Suppose we generate N random, distinct

binary patterns and store them in the matrix X (as defined above), noting that each of the binary variables in

each pattern is selected uniformally from {−1, 1}. The we select a pattern x0 as the target pattern, and select

ρd elements at random in the target pattern to invert, where ρ ∈ [0, 1] determines the % initial error, multiplying

each by -1 to create a new, altered pattern x̃0. We then assign the altered pattern to be the starting state of the

system: ξ0 = x̃0. We then recursively apply the asynchronous update rule, updating the nodes of the Hopfield

network until the state converges on a fixed point ξ∗. We then compute the overlap m = 1
dx

T
0 ξ
∗ to determine

the element-wise similarity between the target state and the stable state upon which the network has converged.

A retrieval is considered successful when we have m ≥ m∗, where m∗ is an overlap threshold. We then repeat

this procedure a large number of times and record the proportion of successful retrievals for the parameters λ, ρ

and m∗. The code for the Monte-Carlo simulation can be found in Appendix C.

The results potted in Figure 5 illustrate the retrieval rate as a function of the load parameter λ for a fixed

initial error of 15% (ρ = 0.15), where two curves have been plotted, one for m∗ = 0.95 and another for m∗ = 0.9.
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The vertical dotted lines correspond to λ = 0.1 ≈ d
2log2(d)d

, where d = 100, the storage capacity threshold for

error-free retrieval (left), and λ = 0.14, the storage capacity threshold for a small percentage error (right). The

results of the simulation reinforce the theoretical results; the retrieval rate of the network is ≈ 1.0 for λ ≤ 0.1,

decreasing dramatically for λ > 0.14. Additionally, performance appears to degrade at a faster rate for m∗ = 0.95

than for m∗ = 0.9 as λ approaches 0.25. Figure 6 illustrates the retrieval rate plotted against the (100 · ρ)%

initial error for different values of λ. We see from the plotted curves that network exhibits nearly perfect retrieval

for λ = 0.05 up to and above an initial error of 25%, with performance decreasing dramatically for λ > 0.1. As

one would expect, it appears that the effects of increasing λ as well as the (100 · ρ)% initial error compound to

cause an even greater, possibly non-linear, decrease in retrieval rate.

In order to understand the inefficiency of the traditional Hopfield model with respect to storage capacity it is

helpful to compare the amount of memory it takes to store the weights and biases of a Hopfield network with d

neurons, having a critical storage capacity of Nc ≈ 0.14d, versus the amount of memory required to store Nc

binary patterns in ordinary computer memory. First, notice that there are d neurons and each neuron is incident

with at most d weighted edges, along with a total of d biases, giving O(d2) weights and biases. Then, notice that

if we would like to store N patterns, setting the weights of the network according to equation (7), each weight will

lie in the range [−N,N ], which is a total of 2N + 1 possible numbers. Assuming the biases also fall in that range

the total memory required to store the weights are biases of the network will be O(d2log2(2N + 1)) bits. On the

other hand, the amount of memory required to store 0.14d ≈ Nc binary patterns, at d bits per pattern, is 0.14d2

bits. The important thing to notice here is that the number of bits required to store the weights and biases scales

logarithmically with N , the number of patterns stored, whereas the amount of information being stored does not.

Figure 7: Pattern retrieval error in a Hopfield network.

As mentioned above, another factor which can have large adverse effects on the critical storage capacity of

a Hopfield network is the degree to which patterns are correlated with one another [16]. As an example,

consider the Hopfield network trained to store and retrieve the Simpsons images, illustrated in Figure 7. Notice

that, in this example, the size of the network is d = 60 × 60 = 3600, and so based on the preceding analysis

the critical storage capacity should be Nc ≈ 0.14d = 504 patterns. However, as illustrated in Figure 7, the

network fails to retrieve the target image of homer, given half-masked image as the initial state. Instead the

network retrieves what appears to be a muddled combination of the patterns stored in the network. The

reason for this is because the stored patterns, each containing a illustration of a face, are highly correlated

whereas the theoretical storage capacity was computed for random binary patterns. The muddled image

retrieved by the network is still a local minima of the energy function, however it is what is termed a ’spu-

rious minima’, which occurs when two nearby energy minima, which may be thought of as fixed points in a
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dynamical system, coalesce to form a new minima which does not correspond to any single stored pattern, but

rather something representing a distorted combination of stored patterns. We will see below that this problem

may be remedied by the careful reconfiguration of the energy function, the storage procedure and the update rule.

A final note regarding the storage capacity of the traditional Hopfield model is that new research published

in 2017 [7] showed that so long as the diagonal elements of the weight matrix are allowed to be non-zero, a

number of patterns far exceeding the number of neurons (Nc >> d) may be stored as fixed points of the system.

However, a paper [8] was published shortly after in response showing that, while the network is able to "store" a

much larger number of patterns than previously thought possible, it is not a particularly useful finding since the

attraction basins surrounding each fixed point are essentially non-existent, so much so that instabilities were

observed for perturbations as small as a single bit. The authors of [9] published a second paper in response in

2019, but by that time John Hopfield, along with a younger researcher named Dmitry Krotov, had published a

new and improved model for associative memory which appeared to bring large improvements to the storage

capacity without sacrificing the networks ability to successfully retrieve patterns. We will examine Hopfield and

Krotov’s new contribution in detail below.

1.4 An Analogy To The Classic Ising Model

Aside from being a model for associative memory in the context of biology, or of content-addressable memory in

computer science, the traditional Hopfield model has been studied extensively in the context of physics as a

simple Ising model [3] [6] [5]. The Ising model is used to model the emergent behaviour that arises from a system

involving lots of very small interacting components, abstractly termed "spins". A spin may at any time be in one

of two "micro-states", -1 or +1. A spin system may be pictured as a lattice (as opposed to a graph) where at

each site on the lattice (as opposed to a vertex) there is an arrow which may point either up (+1) or down (-1) -

see Figure 8-B for an illustration. The spin system has an associated energy function, called the Hamiltonian,

which computes the total energy of the system as a function of several different components. First and foremost

is the collective state of the individual spins, which may be represented entirely by a binary vector, as per the

Hopfield model, where energy between two adjacent spins is lowest when they are pointing in opposite directions

(i.e. +1 * -1 = -1). Furthermore, each pair of adjacent spins has an associated coupling strength (as opposed

to a weighted edge or synaptic connection) which dictates the degree to which the interaction between each

pair of spins contributes to the overall energy. Finally, each spin is influenced by an external field (as opposed

to a bias or threshold value) which also contributes to the total energy of the system. As per the Hopfield

model, the objective is to study the emergent dynamics of the system under different coupling strengths and

external fields. An elementary illustrative example may be seen in Figure 8-A where the spins are illustrated as

small dipole magnets in the presence of an external magnetic field, and where the coupling strength between

adjacent magnets may be controlled. If left to rotate freely, the magnets will always settle in a configuration

which corresponds to an energy minima of the system.
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Figure 8: The classic Ising model (an analogy to the Hopfield model) illustrated. A A simple system of dipole

magnets (spins) where each magnet is free to rotate, having either north pole up (+1) or south pole up (-1).

Additionally each magnet is in the presence of a (often much stronger) magnetic field, the larger magnets, and

the coupling strength between magnets is controlled by a barrier between each pair. The small magnets will

always attempt to arange themselves in a low energy state - a local minima of the Hamiltonian. B A theoretical

spin system illustrated as a lattice, where the arrows at the vertices of the lattice represent the spins. Spins may

point up (+1) or down (-1).

2 Modern Hopfield Networks

2.1 Dense Associative Memory

In a 2016 paper titled "Dense Associative Memory for Pattern Recognition" [11] John Hopfield, together

with a younger researcher named Dmitry Krotov, proposed a new-and-improved Hopfield model which the

authors refer to as a dense associative memory model. The major contribution of the paper was to show

that, as opposed to the linear critical storage capacity of the original Hopfield model, the dense associative

memory model has a critical storage capacity which is polynomial in the size of the network - a major improve-

ment. We will now go on to examine the formal definition of the dense associative memory model proposed in [11].

As opposed to the original Hopfield model, the modern Hopfield model proposed in [11] no longer involved a

weight matrix, but is rather based entirely on an energy function of the form:

E(ξ) = −
N∑
k=1

F (xTk ξ) (14)

Where F (x), referred to as the interaction function, is some smooth function which defines the energy "surface"

in the d−dimensional state space of the network. In the original Hopfield model the interaction function takes

the form F (x) = x2, which allows only for second order interactions between neurons. The authors of [11]

observe that the severe increase in retrieval errors which occurs in the original model when one attempts to

store N > 0.14d patterns arises because the quadratic form of the interaction function results in the energy

changing "too slowly" as the state of the network approaches a point phase space corresponding to a stored

memory. The authors then suggest that a polynomial interaction function of the form F (x) = xn with n > 2,
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allowing for higher order interactions, would result in an energy "surface" 9 wherein each of the stored patterns

is more likely to be associated with a deep, convex energy minima about which the rate of change of energy

is more extreme. This makes intuitive sense when one considers the input to the interaction function, as seen

in equation (14), which is simply the inner product between the network state ξ and a stored pattern xi,

which is a measure of their similarity. In the case that the patterns {x}Ni=1 are randomly distributed, if the

state of the network ξ is in close proximity to some stored pattern xk in state space, the term F (xTk ξ) will

dominate the energy (14), where the strength of the signal may be increased by increasing the degree n of the

polynomial interaction function. Notice that a difference of 1 bit between ξ and xk corresponds to a difference

of 2 in the inner product, which will in turn be raised to the power of n inside the interaction function. The

result of having a high-order polynomial interaction function will mean a faster rate of change in energy and a

wider basin of attraction in the regions of the state space about the points which correspond to the stored patterns.

Having defined the energy function, the authors of [11] go on to define a rule for updating individual neurons

according to a transition function:

ξ
(t+1)
i = Ti(ξ

(t))

The transition function, Ti(ξ), makes explicit use of the energy function such that the updated value of the ith

bit, ξi, clearly corresponds to a decrease in energy. This is accomplished by computing sgn() of the difference

between the energy of the network for ξi = 1 and ξi = −1:

Ti(ξ
(t)) = sgn

 N∑
k=1

F
xki +

∑
j 6=i

xkj ξ
(t)
j

− F
−xki +

∑
j 6=i

xkj ξ
(t)
j

 (15)

Now we will examine the critical storage capacity of the model proposed in [11], where the interaction function

has a polynomial form, F (x) = xn. What we would like to establish statistically is the number of patterns we

can store in such a model before the stored patterns (or rather, the states corresponding to the stored patterns)

are at significant risk of becoming unstable points in phase space. To answer this question, consider the case

where we randomly sample N binary patterns {xk}Nk=1 such that each bit in each pattern is either +1 or −1 with

equal probability. Now, suppose the network is in a state ξ(t) = xk′ , corresponding to the k′th stored pattern,

and consider the change in the energy of the network if the ith bit were flipped (multiplied by -1):

∆iE =

N∑
k=1

(xki x
k′

i +
∑
j 6=i

xkjx
k′

j )n − (−xki xk
′

i +
∑
j 6=i

xkjx
k′

j )n

 (16)

= dn − (d− 2)n +
∑
k 6=k′

(xki x
k′

i +
∑
j 6=i

xkjx
k′

j )n − (−xki xk
′

i +
∑
j 6=i

xkjx
k′

j )n

 (17)

In order for ξ(t) = xk′ to be stable, we need that ∆iE > 0 for i = 1, . . . , d, which will cause the ith bit to remain

unchanged when applying the update rule (15). Notice that if the the k = k′ term in equation (16), which we will

label Esignal, dominates the sum then flipping the ith bit will correspond to ∆iE > 0, which is what we need for
9It is not technically a surface since the state space is discrete, but it is helpful to visualise it this way.
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stability. However, it is clearly possible for the terms k 6= k′, which we will label Enoise, to contribute to the sum

in such a way that the change in energy is negative, which would result in the state of the network being unstable.

For this to happen we require |Enoise| > |Esignal| and Enoise < 0. We can compute the approximate probability

of these two events occurring in the following way. If d and N are large enough then we will have, by the central

limit theorem, that ∆iE is distributed normally with mean 〈∆E〉 = Esignal = d− (d− 2)n ≈ 2n · dn−1 (for large

d, by the binomial theorem), and a variance Σ2 ≈ Ωn(N − 1)dn−1 (for large d), where Ωn = 4n2(2n− 3)!! 10[11].

Now we would like to know the probability that the fluctuations contributed by Enoise, which we will denote

Y = ∆iE − 〈∆iE〉 and which is also a normally distributed random variable in the limit, will both exceed the

magnitude of Esignal and be less than zero. Since the normal distribution is symmetric, we can compute the

probability of this occurring as:

Perror =

∫ ∞
Esignal

dy√
2πΣ2

e−
y2

2Σ2 ≈
√

(2n− 3)!!

2π

N

dn−1
e−

dn−1

2N(2n−3)!!

where the integral is computed easily using a conversion to polar coordinates. If we require Perror < 0.05 - that

stored patterns correspond to unstable states only 5% of the time when patterns are generated randomly - then

we can compute an upper limit on the critical storage capacity as:

Nc = λnd
n−1 (18)

where λn is, as in the traditional Hopfield model, the load parameter, but now parameterised by n. Note that

Setting n = 2, we recover λ2 ≈ 0.14 which is the value of the load parameter for a small percentage retrieval

error in the traditional Hopfield model. The key realisation about the expression (18) is that Nc is polynomial in

d and that there is a powerful non-linear relationship between d and n which gives a far larger storage capacity

than the original model. We may then extend this condition to Perror < 1/d which, in the limit of d, will ensure

no stored pattern is unstable, the authors of [11] state, but do not prove, that the critical storage capacity is:

Nc =
1

2(2n− 3)!!

dn−1

ln(d)
(19)

which is slightly more restrictive, but Nc still grows with d in a highly non-linear way. Note that the result

expressed by (19) is not derived explicitly in [11], a proof may be seen in [13].

The proposition of the new-and-improved model for dense associative memory prompted a near immediate

response in the form of a paper published in 2017 which extended the new dense associative memory model

by proposing an exponential interaction function, as opposed to a polynomial one, which was shown to lead to

storage capacity which is exponential in d - better still. This extension to the modern Hopfield model is what we

will explore next, and is arguably one of the most important results in the literature on Hopfield networks to

date.
10The double factorial is not, as you would assume, a factorial of a factorial. It is in fact the product of a sequence of numbers

which decreases by 2, as opposed to 1.
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2.2 Exponential Storage Capacity

While considering the polynomial energy function, and the corresponding approximately-polynomial storage

capacity as expressed in (18), it is natural to wonder what happens if we take n → ∞. Hopfield and Krotov

suggest in [11] that the performance degrades for very large n, however, the authors of a 2017 paper titled On a

Model of Associative Memory with Huge Storage Capacity [13] prove in great mathematical detail that this is

not the case. The major contribution from [13] is proving that, in fact, using an exponential interaction function,

as opposed to a polynomial one, to compute the energy of the network leads to a critical storage capacity which

is exponential in the size of the network d whilst maintaining the basins of attraction about the points in phase

space corresponding to the stored patterns. We will now go on to state and prove the theorem which is the main

contribution of the paper, and which cements the mathematical relationship between:

1. The critical storage capacity Nc;

2. The size of the network d, and;

3. The (100 · ρ)% initial error required for error-free retrieval.

It is important to keep in mind while considering the theorem below that since the original Hopfield model was

proposed the relationship between these three factors had (to my knowledge) never been established prior to

[13], despite the large amount of analysis published on the Hopfield model.

Theorem 4. Consider a modern Hopfield network with dynamics governed by a transition function Ti(ξ)

given by equation (15), with an interaction function of the form F (x) = ex. For a fixed 0 < α < log(2)/2 let

N = exp(αd) + 1 be the storage capacity of the network, and let {xk}Nk=1 be N patterns sampled randomly and

uniformally from {−1, 1}d. Moreover, fix ρ ∈ [0, 1/2) and let α depend on ρ such that

α <
I(1− 2ρ)

2

where I(x) = 1
2 ((1 + x)log(1 + x) + (1− x)log(1− x)). Then, for any k and any x̃k taken from the Hamming

sphere11 with radius ρd (assumed to be an integer) and centered at xk, S(xk, ρd), we have that

P
(
∃k ∃i : Ti(x̃k) 6= xki

)
→ 0

as d→∞.

Proof. A detailed proof of this theorem is given in Appendix B.

Let us make a few observations about this theorem. Firstly, in words, theorem 4 states that, given certain

numerical constraints, a modern Hopfield network with an exponential interaction function will be able to store

exponentially many patterns in the size of the network. Furthermore the theorem assures us that not only will

the stored patterns correspond to stable fixed points in the phase space, but that the network will be able to

retrieve any distorted pattern by correcting individual bits in a single step, given that the % initial error is

inversely related to the storage capacity in the manner described above. Secondly, note that the theorem may be

proved analogously for a Hamming ball B(xk, ρd), that is, the theorem holds for all Hamming spheres with a
11The Hamming distance between two binary strings is the number of bits which are different between them. A Hamming sphere

with radius S(y, r), is simply the set of all binary strings which are a hamming distance of r from y.
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radius smaller than ρd.

Figure 9: The above plot illustrates the results of a Monte-Carlo simulation where the retrieval rate for randomly

generated patterns plotted against the load parameter λ = N/d for a modern Hopfield network with an

exponential interaction function. The load parameter corresponding to the critical storage capacity (according

to theorem 4) is plotted as a dashed line (λ = 0.75)

We now repeat the same simulation as given in Figure 5, using a modern Hopfield network with an exponential

interaction function. The results are illustrated in Figure 9: here we have simulated a network with d = 20

neurons, varying the number of stored patterns N , and therefore the load parameter, plotting the percentage

of successful retrievals, that is where m > m∗ = 0.95. As with the previous simulation, we set the initial

error to be (100 · ρ)%, where ρ = 0.15, for all starting states. This gives, according to tehorem 4, a critical

storage capacity of Nc =exp(αd) + 1 = 15, where α ≈ 0.135 < I(1 − 2ρ)/2 - the corresponding critical load

parameter λ = Nc/d = 0.75 has been indicated in the plot of the results, which again supports the theoretical

result. By comparison, the classic Hopfield network under the same conditions had a retrieval rate of 70% by

λ ≈ 0.15, versus λ ≈ 7.0 (7 times the size of the network) for the modern Hopfield network. The improvement in

performance is hard to overstate.

As a further illustration and test of the Hopfield networks performance under the task of storing and retrieving

highly correlated patterns, we expand the Simpson experiments performed above. Figure 10 illustrates the result

of storing 24 binary patterns, corresponding to images of the faces of various characters from the Simpsons, and

attempting to retrieve the image of Homer, starting in a state which is ≈ 50% altered (i.e. masked Homer). As

illustrated the network retrieves the correct image, and moreover it corrects all the bits in the state after a single

update. The classic Hopfield network by comparison could not correctly retrieve the same pattern when we

attempted to store 4 binary patterns from the same data set. The code for the modern Hopfield network with

an exponential interaction function may be found in Appendix C. In the final section we go on to examine the

most recent iteration of the Hopfield model - Hopfield networks able to store and retrieve real-valued patterns

(i.e. continuous-state Hopfield networks).
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Figure 10: Successful pattern retrieval in a Modern Hopfield network with an exponential interaction function.

2.3 Continuous-State Hopfield Networks

A paper titled "Hopfield Networks Is All You Need" [16] was published earlier this year (2020) which extends

the work in [13] (exponential storage capacity) to modern Hopfield Hopfield networks which are able to store

and retrieve real-valued patterns. That is, the state vector of the newly proposed Hopfield model is ξ ∈ Rd.

Additionally, the authors of [16] propose a new energy function, as well as an update rule, which give rise to a

continuous state Hopfield model with the following properties:

1. Exponential storage capacity in the size of the network, d;

2. Global convergence to a local minimum, and;

3. Convergence after one update of the state of the network with high probability.

Energy function Note that the energy function given by equation (14) with F (x) = exp(x) can be written as

E = −exp(lse(1, XT ξ)), where X = (x1, . . . ,xN ) are the stored patterns, and lse stands for the log-sum-expontial

function which has the form:

lse(β,y) = β−1log

(
N∑
i=1

exp(βyi)

)
for some β > 0, which is called the inverse temperature parameter. Then, the new energy proposed in [16] has

the form:

E(ξ) = −lse(β,XT ξ) +
1

2
ξT ξ + β−1log(N) +

1

2
M2 (20)

= −lse(β,XT ξ) +
1

2
ξT ξ + C (21)

where M = maxi‖xi‖. The first term in equation (20) is simply the (negative) log of the (negative) exponential

energy proposed in [13]. The second (quadratic) term is used to ensure that the energy remains finite12. The
12Discrete Hopfield networks do not have this issue since the state is binary, and therefore bounded.
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third and fourth terms are simple normalising constants. The β−1log(N) term may be merged with the lse term,

simply dividing the sum inside the log over all N patterns by N . Finally, the 1
2M

2 term performs a function

analogous to the second term; preventing the energy from growing too large. Importantly, it is simple to show

(as in [16]) that the energy is bounded like

0 ≤ E ≤ 2M2

Update rule The new energy function defined above has good properties which allow for the engineering of a

new update rule which may be derived using the so-called Concave-Convex Procedure (CCCP) [19]. The CCCP

is a method of deriving an update rule based on an energy function leading to a sequence of states which causes

the energy to decrease monotonically. It is defined by the following theorem.

Theorem 5. Consider a vector-valued energy function E(v) which is bounded from below, and may be written

in the form

E(v) = Evex(v) + Ecave(v)

where Evex(v) and Ecave(v) are convex and concave functions of v, respectively. Then, the discrete iterative

update rule v(t) 7→ v(t+1) derived from

∇vEvex(v(t+1)) = −∇vEcave(v
(t))

is guaranteed to produce a sequence of energy values which decreases monotonically and will hence converge to a

minimum or saddle point of E(v).

Now, using the CCCP the new update based on the new energy function may be derived in the following way.

Note that we can write the energy function given by equation (20) as

E(ξ) = E1(ξ) + E2(ξ)

where E1(ξ) = 1
2ξ
T ξ+C is convex, since it has a quadratic form, and −lse(β,XT ξ) is concave, since lse(β,XT ξ)

is convex 13. Therefore, since the energy is bounded from below, we can use the CCCP to derive a discrete,

iterative update rule as follows

∇ξE1(ξ(t+1)) = −∇ξE2(ξ(t))

=⇒ ∇ξ
[

1

2
ξT ξ + C

]
(ξ(t+1)) = ∇ξ

[
lse(β,XT ξ)

]
(ξ(t))

=⇒ ξ(t+1) =

 β−1∑N
k=1 exp(βxTk ξ)

(∑
k

βxk1exp(βxTk ξ), . . . ,
∑
k

βxkdexp(βxTk ξ)

)T (ξ(t))

=⇒ ξ(t+1) =

[
X∑N

k=1 exp(βxTk ξ)

(
exp(βxT1 ξ), . . . , exp(βxTNξ)

)T]
(ξ(t))

Altogether this yields an update rule with the following, simple form:
13Let X be a convex set in a real vector space. Then, a function f : X → R is convex if ∀x1, x2 ∈ X, γ ∈ [0, 1] we have that

f(γx1 + (1− γ)x2) ≤ γf(x1) + (1− γ)f(x2). The lse function is indeed convex, but the proof will not be included in this report.
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ξ(t+1) = Xsoftmax(βXT ξ(t)) (22)

Notice that in the update rule given by equation (22), the softmax(βXT ξ(t)) function simply creates a distribution

over all stored patterns weighted by the dot product of the state pattern, ξ, which the authors of [16] call the

query, with the stored patterns in X. An important assumption made by the authors about the pattern matrix

X, upon which the update rule given by equation (22) depends, is that for each stored pattern xi we have

||xi|| = K, where K ∈ R is the radius of a sphere in Rd centered at the origin on which all stored patterns

exist. This ensures that if the query (state pattern) corresponds to one of the stored patterns xi, the largest dot

product when taken over all patterns X = (x1, . . . ,xN ) will be with the ith pattern (itself) - this ensures pattern

retrieval works as expected14. Returning to equation (22), after obtaining the weighted distribution over patterns

from the softmax function, the dot product of the distribution is taken with the pattern matrix X which gives a

weighted average over the stored patterns, whether the largest weighting is given to the pattern which has the

largest dot product (similarity) with the query. Notice to that the weighted distribution depends directly on

the parameter β, referred to by the authors of [16] as the inverse temperature parameter. Setting β = 0, the

softmax function would return a uniform distribution, meaning that the update rule would return a uniformally

weighted average over all patterns in X. On the other hand, as we make β larger, we increase the relative

contributions of the dot products computed by XT ξ(t) inside the softmax function, and therefore increase the

basin of attraction about the stored patterns in the phase space such that, in the limit β →∞, the update rule

will return the pattern in X which most closely resembles the query. We illustrate the effect of varying β below,

and the emergence of what the authors of [16] call meta-stable states (states which we previously referred to as

corresponding to spurious minima of the energy function). We now establish he so-called global convergence

theorem given in [16].

Theorem 6. By applying ξ(t+1) = Xsoftmax(βXT ξ(t)) iteratively we have that E(ξ(t))→ E(ξ∗) as t→∞, for

a fixed point ξ∗.

Proof. The update rule given by equation (26) is derived using the CCCP [19] which guarantees us that the

energy E(ξ(t)) will decrease monotonically as the update rule is recursively applied (as t→∞). Then since E

is bounded from below the sequence of energy values is guaranteed to converge to a local minima (or saddle

point15) of the energy function.

Theorem 6 assures us that we have convergence of the energy to a local minima or (a saddle point) if we apply

the update rule given by equation (22). However, we still need to be sure that we have convergence of the

network state, that is ξ(t) → ξ∗ as t→∞. The following theorem gives us such assurance.

Theorem 7. Given a continuous state, modern Hopfield network in some state ξ(t) at time t, if we recursively

apply the update rule given by equation (22), we are guaranteed to get E(ξ(t))→ E(ξ∗) as t→∞, for some fixed

point ξ∗. Furthermore we will have ||ξ(t+1) − ξ(t)|| → 0 and either:

1. {ξ(t)}∞t=1 converges, or;
14Practically, this involves normalising each of the stored patterns such that all stored patterns correspond to d-dimensional

vectors of the same length.
15The authors of [16] note that they never once witnessed convergence to a saddle point in all their experiments.
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2. The set of limit points of {ξ(t)}∞t=1 is a connected, compact subset of L(E∗) where `(a) = {ξ ∈ `|E(ξ) = a}.

If `(E∗) is finite, then any sequence {ξ(t)}∞t=1 generate by applying the update rule given by equation (22)

converges to some ξ∗ ∈ `(E∗).

In words, theorem 7 simply states that either we are guaranteed to converge to a single fixed point, or the state

will move between (continuous) states in a connected, compact set which all correspond to the same energy

minima. We will now go on to examine some results regarding the storage capacity of continuous state, modern

Hopfield networks.

Storage capacity Before we cover the theorem which, as with the modern binary state variant above, assures

us that the continuous state variant proposed in [16] has an exponential storage capacity in the size of the

network d, we need to define successful storage and retrieval for continuous states first. First, we consider the

d−dimensional sphere Si around some point in the state space corresponding to a pattern xi. We will say that

xi is stored if there is a single fixed point x∗i ∈ Si to which all points ξ ∈ Si converge when applying the update

rule given by equation (22). Furthermore we require Si ∩ Sj for i 6= j. Then, we say xi is retrieved if we have

convergence of the the state of the network to the single fixed point x∗i ∈ Si. Finally, we define the retrieval

error as ||xi − x∗i ||, the vector norm between the stored pattern and the fixed point. We now go on to state the

storage capacity theorem for continuous state, modern Hopfield networks.

Theorem 8. We consider randomly generated, continuous state patterns in Rd which lie on the sphere centered

at the origin with radius M = K
√
d− 1, where K ∈ R. Additionally, we assume (choose) so-called failure

probability 0 < p ≤ 1. We then define the following constants:

a :=
2

d− 1

[
1 + ln(2K2βp(1− d))

]
(23)

b :=
2K2β

5
(24)

c :=
b

W0exp(a+ ln(b))
(25)

where W0 is the upper branch of the Lambert W function 16. We also ensure that c ≥ ( 2√
p )4/(d−1). Then, with

probability 1− p, the number of patterns that can be successfully stored and retrieved is

N ≥ √pc
d−1

4

We will omit the proof of this theorem as it it similar in nature to the proof of theorem 4. We will however make

some observations about the theorem. The first and most important observation is that, in spite of the complex

relationships between the variables a, b and c, the critical storage capacity N grows exponentially in d, which

is what we want. Secondly, notice that the critical storage capacity is inversely related to the proportionality

constant K which determines the radius of the sphere from which we take our random patterns, meaning that a

larger variance across the set of patterns which we would like to store translates to a smaller storage capacity.

The final two important results given by the authors of [16] are (i) that the continuous state, modern Hopfield

network with the dynamics defined above typically converges to a fixed point after one update (a specific upper
16The Lambert W function is a complex function used to solve transcendental equations. The "upper branch" is a reference to the

branches which arise when rotating about a branch point singularity in the complex plane.
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bound is given in [16] for the error after a single update between the resulting state and the closest fixed point),

and (ii) that the retrieval error for all stored patterns is bounded from above, vanishing if the stored patterns

are well separated (non-correlated).

Using the same test case as for the previous variants of the Hopfield network examined above, Figure 11 illustrates

the successful storage and retrieval of the real-valued ’Homer’ pattern by a continuous state, Modern Hopfield,

from a set of 24 real-valued patterns. Additionally, 12 illustrates the effect of varying the inverse temperature

parameter β, as seen in the update rule given by equation (22). Notice that for lower values of β, corresponding

to a low temperature, we observe the emergence of meta-stable states, which are essentially weighted averages of

Figure 11: Successful pattern retrieval in a Modern, continuous state Hopfield network.

several patterns which correspond to points in the phase space which exist in close proximity to the fixed point

corresponding to the ’Homer’ vector. On the other hand, large values of β, corresponding to a low temperature,

which causes the basins of attraction of the individual stored patterns to remain well separated, ensuring

convergence to a fixed point corresponding to a stored pattern [16]. Note that, as we will explore below, in

some practical applications the emergent meta-stable states may be thought of as prototypes 17 - generalised

representations of similar, nearby patterns in the phase space - which may be used to improve class separation

in classification tasks, as an example. We will now go on to explain the link between the update rule given by

equation (22) and the attention mechanism used in modern Transformer models.

2.4 From Hopfield Networks to Transformer Attention

One of the principle contributions of the "Hopfield Networks is All You Need" paper [16] is showing that the

update rule given by equation (22) is equivalent to the attention mechanism used in modern sequence to sequence

models such as the transformer or BERT (Bidirectional Encoder Representations from Transformers) models.

In its most basic form, attention in sequence to sequence mapping tasks is defined as the relative importance, or

weighting, of different elements in the input and/or output sequence when trying to map a single element from

one sequence to the other. The easiest way to understand this concept is consider the example of self-attention in
17We use the term in the same way it is used by Krotov and Hopfield in [11]
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Figure 12: An illustration of the emergence of meta-stable states in a continuous state, modern Hopfield network

when varying β.

a single sentence, as illustrated in Figure 11, where when asking the question "what other words in the sentence

give us the most information about the word ’it’?". Clearly "it" is a reference to "the animal" and so we see

that the self-attention (computed between the sentence and itself) weights "the" and "animal" as giving the

most information about the word "it" in the context of the sentence. The attention mechanism is the central

to the transformer model introduced in the paper "Attention Is All You Need" [18] which has lead to record

breaking performance in the field of Natural Language Processing, in particular on translation tasks, which are

sequence to sequence tasks by definition.

Figure 13: Self-attention over a single sentence, as computed by the self-attention mechanism of the transoformer.

Image source: www.jalammar.github.io/illustrated-transformer/

To understand how the Hopfield update rule given by equation (22) is equivalent to the attention mechanism

of the transformer, a good illustrative analogy is that of making a query in a relational database. Typically

we would query a relational database by providing a query Q with the hopes of retrieving a value V, which is

simply some data stored in the database. To do so we compare the query with a set of keys, each of which is

associated with a value, using a similarity function f , after which we would return the value corresponding to

the key which is most "similar" to the query we submitted. In other words, the similarity function acts as a map

f(Q,K)→ V , for some key K, some query Q and some value V . This is illustrated in Figure 12.

Notice that there is a clear similarity between the process of querying a relational database, and performing the
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Figure 14: An illustration of how a query is performed in a relational database. The query is compared to each

key by a "similarity function" and the value with the largest corresponding "similarity" is returned.

state update given by equation (22); for the sake of this comparison we may view the network state ξ as the

query which is then compared which each pattern in X, which may be seen as the keys. The softmax function

computes the similarity - a probability distribution or weighting over stored patterns - after which a pattern (or

a weighted average over the stored patterns) is then selected from X via the dot product. To show this explicitly

we consider the following adaptation of the update rule given by equation (22). Instead of a single state pattern,

we consider a matrix of state patterns (corresponding to a sequence) R = (ξ1, . . . , ξS)T and, as usual, a matrix

of stored patterns Y = (y1, . . . ,yN )T (which may also, for the sake of this example, be viewed as a sequence).

Now, instead of comparing the two sets of patterns directly, we would first like to map them to an associative

space of dimension dk in the following way:

Q = RWQ

K = YWK

where WQ ∈ Rd×dk and WKRd×dk are learnable weight matrices. We may view Q as the "query" matrix and K

as the "key" matrix. We then set β = 1/
√
dk and compute the output of the adapted update rule as

(Qnew)T = KT softmax
(

1√
dk
KQT

)
=⇒ Qnew = softmax

(
1√
dk
QKT

)
K

where the softmax function acts on each column of the matrix 1√
dk
QKT to produce a multinomial probability

distribution vector. Finally, we map the output of the update rule to an output space of dimensions dv using

another weight matrix Wv ∈ Rdk×dv , which altogether gives:

Z = QnewWv = softmax
(

1√
dk
QKT

)
KWv = softmax

(
1√
dk
QKT

)
V (26)

Equation (27) is the exact form of the attention mechanism given in [18] between the two sequences of vectors R

and Y .

It is interesting to think of the modern Hopfield network as computing the attention of one pattern, the query or

state ξ, over all the stored patterns X as opposed to simply performing pattern retrieval. Taking this view, the

authors of [16] have created a so-called Hopfield Layer, which may be integrated into any deep neural network

architecture to perform various useful functions, including attention, self-attention (if R = Y ) and pooling. The

architecture of the Hopfield Layer is shown below in Figure 13.
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Figure 15: An illustration of the versatile Hopfield Layer proposed in [16].

3 Experiments: Pattern Recovery and Pattern Separation Using Hop-

field Networks Applied to the MNIST Data Set

The MNIST data set is a collection of 70,000 images of handwritten digits, a selection of which are visualised in

Figure 16, consisting of 10 distinct classes (one for each digit) of approximately 7000 instances each. Each digit

may be represented as a real-valued pattern vector of 784 pixels; x ∈ [0, 1]784. In this section we will perform

two experiments to illustrate some of the properties and functionality of the continuous state, modern Hopfield

network proposed in [16]. First, we will conduct a pattern retrieval experiment to determine how accurately

the Hopfield model is able to perform accurate retrieval given a noisy/corrupted version of a stored digit pattern.

Second, we will conduct a pattern separation experiment in order to determine whether or not the Hopfield

model may be used to separate unlabelled patterns into their natural classes.

Figure 16: A sample of ten digits from the MNIST data set. Each digit is a real-valued vector of 784 pixels,

represented above in a 60×60 grid.
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3.1 Methodology

Pattern retrieval To test the effectiveness of the Hopfield model proposed in [16] when used for retrieval of

corrupted patterns, we will conduct a Monte Carlo simulation similar in nature to the simulations used to test

the storage capacity of the Hopfield model variants explored above. We will use the MNIST test set, which

consists of 10,000 digit patterns, with approximately 1000 samples per digit class. As per usual, let X be the

matrix of stored N = 10000 patterns, where each pattern vector has dimension d = 784. In order to ensure all

pattern vectors in X exist on a sphere (having the same norm) we will normalise each pattern to unit length,

and then divide each pattern by maxk,i x
k
i to ensure the elements of all pattern vectors are in the range [0,1].

Now, we perform our Monte Carlo simulation in the following way. Select, uniformally at random, a pattern

xi from the set of patterns in X. Next select, uniformally at random, ρd pixels from xi, where ρ ∈ [0.0, 1.0],

which we will set to 0 to create a new, altered/corrupted pattern18 x̃i. Now, we will use a Hopfield network

to attempt to perform pattern retrieval in the following way. Set the initial state of the Hopfield network to

ξ(0) = x̃i, then perform iterative updates of the state, ξ(t+1) = f(ξ(t)), according to the update rule f given

by equation (22), until we arrive at a fixed point in the phase space, ξ∗ = f(ξ∗), recording the retrieval error

||ξ∗−xi||. We then repeat this process 100 times for a pair of fixed values of β and ρ, averaging over all retrieval

errors to get an average. We repeat this for a range of β and ρ values, plotting the results for analysis - see below.

Pattern separation The MNIST data set is a benchmark data set in the statistical and machine learning

communities for classification algorithms. For a classification algorithm to perform exceptionally well on MNIST,

it needs to be able to determine a decision boundary in a 784-dimensional space of pixels which separates the

clusters corresponding to the ten digit classes. What makes this task challenging is the fact that several of the

classes are highly correlated (for example, the digit classes 4 and 9 contain several digit images which, even to

the human eye, may be hard or impossible to identify correctly). The K-nearest neighbours algorithm is an

example of a classification algorithm which relies on good class separation/clustering of classes. We would like to

test whether we could use the emergent meta-stable states, which arise in phase space as the parameter β is

decreased in the Hopfield model, in order to better separate the clusters of MNIST digit classes. In order to

explore the effectiveness of the Hopfield model when applied to this task, we will select all patterns belonging to

either of two classes from the MNIST test set, storing them in the pattern matrix X. Then, for each pattern

x in X we set the initial state of our Hopfield model ξ(0) = x̃, and again, apply the Hopfield update f until

we obtain a fixed point, ξ∗ = f(ξ∗). We will repeat this process for all patterns in X for a range of β values,

and, for each value of β, we will project the resulting fixed points onto a 2-dimensional plane using principle

component analysis (2D) in order to analyse the separation of classes. Our hypothesis will be that as we drive β

towards zero, the Hopfield updates will converge on fixed points corresponding to meta-stable states which are

essentially weighted averages over nearby patterns. Clearly in the limit β → 0 all fixed points in the phase space

will eventually coalesce to form a single fixed point - a uniformly weighted average over all stored patterns - while,

on the other hand, for β >> 1 we will have approximately the same number of fixed points as patterns. The

ideal value of the β parameter will be one which allows for the coexistence of two fixed points, one corresponding

to each class, where when Hopfield updates performed on starting state which corresponds to a pattern in one of
18The same experiment was conducted, except instead of setting the randomly chosen pixels to 0 each pixel value was sampled

from a normal distribution (i.e. Gaussian noise), and the results were not found to be significantly different.
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the two classes will yield convergence to the fixed point associated with that same class. We will perform this

process for a select few pairs of digits and analyse the apparent effectiveness of the Hopfield model applied to

the task of pattern separation.

3.2 Results and Discussion

Pattern retrieval Figure 17 illustrates two examples of pattern retrieval for a digit from the 0 class, using a

continuous state, modern Hopfield network with β = 4.0 for two different percentages of the initial error. The

results are as expected: the larger the initial percentage error (the more corrupted the pattern), the higher the

retrieval error.

Figure 17: An example of pattern retrieval by a continuous state, modern Hopfield network. Here β = 4.0 for

both examples. A. an initial error of 50%, resulting in a retrieval error of 0.04, and B. an initial error of 80%,

resulting in a retrieval error of 2.5

The results of the full Monte-Carlo simulation, shown in Figure 18, exhibit some interesting trends. As expected,

for large values of β (>2.0) we have that the retrieval error increases reliably with the (100 · ρ)% initial error.

This makes sense because if β is large the basins of attraction about each stored pattern in the phase space

remain well separated and so we will have approximately as many fixed points as patterns, meaning that if

the (100 · ρ)% initial error is large then the initial state of the network, being the corrupted pattern, will likely

settle at a fixed point which is far away from the original pattern in the phase space. As β decreases however,

we see some interesting and unexpected results begin to emerge: if the (100 · ρ)% initial error is large, smaller

values of β produce lower retrieval errors on average. This may be due to the fact that as β is decreased, fixed

points, which correspond to stored patterns when β >> 1, begin to coalesce as the basins of attraction begin to

overlap. This ultimately causes a decrease in the number of fixed points, and so for a high (100 · ρ)% initial

error, although the initial state (the corrupted pattern) is far away from the state corresponding to the original

pattern in phase space, there are fewer attractors (fixed points) in the phase space between the initial state and

the goal state (corresponding to the original pattern) and so the state of the network will often converge on a

fixed point corresponding to a meta-stable state which is not as far away from the goal state as would be the

case for β >> 1.

Pattern separation The results of the pattern separation experiment can be seen in Figure 19. Results have

only been plotted for a select set of pairs of digits classes: 1 and 7; 2 and 5; 3 and 8; 4 and 9 (from top to
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Figure 18: The results of the pattern retrieval experiment applied to the MNIST test set. Retrieval error is

compared for values of β and ρ. A. A 3D surface plot of retrieval error over a range of β and ρ B. Cross sections

of retrieval against β for various values of (100 · ρ)% initial error.

bottom in Figure 19). After applying dimensionality reduction using PCA, the points corresponding to the

samples from either class are plotted in the form of a scatter plot (top row) as well as a density plot (top row)

since several patterns may converge on a single fixed point, making it difficult to interpret the density of the

scatter plot for smaller values of β. We see that class separation works well provided that the classes don’t have

too large an overlap initially. This is the case with the pairs 1 and 7, as well as with 2 and 5; the Hopfield

network is able to iteratively tease apart the patterns for lower values of β, which may improve the effectiveness

of some classification methods, like k-nearest neighbours, for example. On the other hand if there is a large

overlap between patterns, as is the case with the pairs of digit classes 3 and 8, as well as 4 and 9, we see that

the Hopfield model fails to separate the classes, causing all patterns to converge on a single fixed point instead.

One way to improve this method may be to use a variation of the update rule given by equation (22) where the

dot product XT ξ is replaced with the generalised dot product XTWξ, where W ∈ Rd×d is a learnable weight

matrix (this is similar to the way that the attention mechanism is derived from the Hopfield update). If the

objective measure were carefully designed, the weights in W may be learned through backpropogation such that,

for a given multi-class pattern separation task, the association between the state and the stored patterns may be

optimised towards improved separation of classes.

4 Conclusions and Future Work

In this research report we have explored the evolution of Hopfield networks over the past three decades. We

have examined the mathematical properties of all the major variants of the Hopfield network, including the first

discrete state associative memory model proposed by John Hopfield in 1982, the subsequent dense associative

memory model, the improved dense associative memory model with exponential storage capacity, and finally, the

continuous state, modern Hopfield network. Furthermore, we have confirmed the theoretical results established

for each of these models via computational simulations, illustrating the relationship between storage capacity,
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network size and percentage initial error when performing retrieval of stored patterns. Finally, we have examined

the relationship between modern Hopfield networks and modern transformers, illustrating the mathematical

equivalence between the update rule of continuous state, modern Hopfield networks and the attention mechanism.

The established relationship between modern Hopfield networks and transformers will likely open up new avenues

for research into associative memory models as it provides and interesting link between energy-based models

and deep learning models, which have historically been separate branches of research. Additionally, further

research may involve the application of a generalised form of the modern Hopfield network (as illustrated by

the ’Hopfield layer’ in Figure 15 above, for example) to solving tasks which may require tools which are able

to learn and exploit features and properties of associative relationships between sets or sequences of patterns.

One example of such research may be seen in the paper "Modern Hopfield Networks and Attention for Immune

Repertoire Classification" [17] which uses modern Hopfield networks to solve the challenging multiple-instance

learning problem of immune repertoire classification.

Figure 19: The results of the pattern separation experiment: each plot consists of a scatter plot (top row) and a

density plot (bottom), both of which illustrate the results of attempted pattern separation using the Hopfield

model for different values of β (higher values on the left, lower values on the right). The dimensionality reduction

was performed using principle component analysis which iteratively performs orthogonal projection of data

points in d−dimensional space onto a (d-1)-dimensional hyper plane, chosen in such a way that variance is

maximised. A. The digit classes 1 and 7. B. The digit classes 2 and 5. C. The digit classes 3 and 8. D. The

digit classes 4 and 9.
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Appendix A: Glossary

• d The number of neurons in a Hopfield network.

• N The number of stored patterns in a Hopfield network.

• X The d×N matrix of pattern vectors stored in a Hopfield network.

• xk A d-dimensional vector corresponding to the kth pattern stored in a Hopfield network.

• xki The ith element of the kth pattern vector stored in a Hopfield network.

• ξ(t) A d-dimensional vector representing the state of a Hopfield network at time t.

• W An adjacency matrix which encodes the weights between neurons in a discrete-state Hopfield

network.

• wij The weight of the edge incident with the ith and jth neurons in a discrete-state Hopfield network.

• b The vector of biases associated with each neuron in a discrete-state Hopfield network.

• Hi(t) The stimulus received by the ith neuron in a discrete-state Hopfield network at time t.

• E(ξ) The energy function of a Hopfield network which depends directly on the state network state.

• Ti(ξ) The transition function which determines the update to the activation of the ith neuron in a modern

Hopfield network.

• λ The load parameter of a Hopfield network, computed as N/d.

• ρ The proportion parameter determining the % initial error when simulating pattern retrieval in a

Hopfield network.

• β The inverse temperature parameter which determines the number and nature of fixed points in the

phase space of a continuous state Hopfield model.
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Appendix B: Proofs

Proof of Theorem 4

Proof. Note: we will split this proof into six parts to make things as clear as possible.

Part 1 Suppose WLOG that our network is in some state x̃1 taken uniformally at random from the Hamming

sphere S(x1, ρd) for a fixed ρ ∈ [0, 12 ). Then, given an interaction function F (x) = ex, consider the change in

energy that occurs as a consequence of changing the activation of the ith neuron:

∆iE(x̃1) =

N∑
k=1

F
xki x̃1i +

∑
j 6=i

xkj x̃
1
j

− F
−xki x̃1i +

∑
j 6=i

xkj x̃
1
j

 (27)

Now, updating the activation of the ith neuron according to the transition function Ti(x̃1) will result in a change

if ∆iE(x̃1) < 0, but not if ∆iE(x̃1) > 019. We can split the sum in the energy change into a signal portion,

including the k = 1 term, and a noise portion, including all terms with k 6= 1:

Esignal = F

 d∑
j=1

x1j x̃
1
j

− F
−2x1i x̃

1
i +

d∑
j=1

x1j x̃
1
j


Enoise =

N∑
k=2

F
 d∑
j=1

xkj x̃
1
j

− F
−2xki x̃

1
i +

d∑
j=1

xkj x̃
1
j


what we would like to show is that the activation of the ith neuron will update incorrectly if |Enoise| > |Esignal|,

and that this event vanishes in the limit d→∞. In order to see this we consider the two possible cases. Either

we will have x̃1i = x1i or we will have x̃1i = −x1i . In the first case, we would like the activation of ith neuron

to remain unchanged, that is, we want ∆iE(x̃1) > 0. In the latter case we would like the network to update

the activation of the ith neuron to have the correct value, that is, we want ∆iE(x̃1) < 0. In both cases Esignal

supports the desired behaviour, indeed we have:

Esignal = F

 d∑
j=1

x1j x̃
1
j

− F
 d∑
j=1

x1j x̃
1
j − 2

 > 0 if x̃1i = x1i

Esignal = F

 d∑
j=1

x1j x̃
1
j

− F
 d∑
j=1

x1j x̃
1
j + 2

 < 0 if x̃1i = −x1i

since F (x) = ex is positive everywhere and monotonically increasing. This means that the activation of the ith

neuron will update correctly if sgn(Esignal + Enoise) = sgn(Esignal), which is fulfilled if |Enoise| < |Esignal|.

Therefore a necessary condition for an incorrect update is |Enoise| ≥ |Esignal|, which together with the fact that

all patterns are sampled randomly and uniformally implies that:

P
(
∃k ∃i : Ti(x̃k) 6= xki

)
≤ d ·N P

(
Ti(x̃1) 6= x1i

)
by definition of P(A ∩B)

≤ d ·N P (|Enoise| ≥ |Esignal|)

19Note: ∆iE(x̃1) = 0 is a negligible case in the limit d→∞
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where the last inequality comes from the fact that having |Enoise| ≥ |Esignal| may result in a correct update by

chance, but is a necessary condition for an incorrect update to occur. Then, we have that:

|Enoise| ≤
N∑
k=2

∣∣1− exp
(
−2xki x̃

1
i

)∣∣ exp
 d∑
j=1

xkj x̃
1
j


≤
[
1− e−2

]
e2

N∑
k=2

exp (〈xk|x̃1〉)

where 〈xk|x̃1〉 is the inner product on {±1}d. Additionally, we have:

|Esignal| > ed(1−2ρ)[1− e−2]

which altogether gives

P
(
∃k ∃i : Ti(x̃k) 6= xki

)
≤ d ·N P

(
N∑
k=2

e2exp (〈xk|x̃1〉) > ed(1−2ρ)

)
(28)

Part 2 We would now like to show that the RHS of equation (21) is bounded above by an expression that goes

to zero as d → ∞. Before we do so, we are going to establish some further definitions and inequalities that

we will use later. We first state three results from the theory of large deviations [14]. If Xm,p ∼ B(m, p) is a

binomially distributed random variable, then for some ε > 0 we have:

P(Xm,p ≥ m(p+ ε)) ≤ exp
(
−m ε2

2(p+ ε)

)
(29)

and for a sum Sm of m i.i.d. Bernoulli random variables Yi with P(Y1 = 1) = P(Y1 = −1) = 1
2 and some

x ∈ (0, 1) we have:

P(Sm ≥ mx) ≤ exp(−mI(x)) (30)

as well as

lim
m→∞

1

m
log(P(Sm ≥ mx)) = −I(x) (31)

where I(x) is as defined as per the statement of the theorem. Note that equation (24) is known as Cramers

theorem for fair ±1 Bernoulli random variables.

Next, we let 0 < α < 1
2I(1− 2ρ), N = exp(αd) + 1 and 0 < β0 < 1 be such that I(β0) = α. By the continuity of

I 20 there exists an ε > 0 such that for all x ∈ (1− 2ρ− ε, 1− 2ρ] we have that α < 1
2I(x) ≤ 1

2I(1− 2ρ). Again,

since I is continuous and strictly increasing on [0,1), we can choose 0 < β < β0 < 1 such that:

α− ε

2
= I(β0)− ε

2
< I(β) < I(β0) = α (32)

20I(x) is a continuous, convex bowl defined on x ∈ (−1, 1) with a range of [0, 2log(2)), which is striclty increase over [0,1).
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Finally, we will define:

A = {k ∈ {2, . . . , N}|〈xk|x̃1〉 ≥ βd}

p = P (〈xk|x̃1〉 ≥ βd)

That is, A is the set of the indices of all stored patterns which have an inner product with x̃1 greater than or

equal to βd, which we will call "significant overlap". Also, p is the probability that one or the stored patterns

xk, which is randomly, uniformally sampled, is such that k ∈ A. Now, we have that for η = 1
2 (α− I(β)) > 0 (by

25) and d sufficiently large we have, by (23) and (24) respectively:

p < e−dI(β) (33)

p > e−d(I(β)+η) (34)

Part 3 We now continue by finding an upper bound for the probability in the RHS of equation (21). Let Pq be

the set of all subsets of the set {2, ..., N} of size q. Then, note if a randomly generated pattern xk is such that

k /∈ A, then we will have 〈xk|x̃1〉 < βd. Then, we have

P

(
N∑
k=2

e2exp (〈xk|x̃1〉) > ed(1−2ρ)

)

=
∑

X⊂{2,...,N}

P

((
N∑
k=2

exp (〈xk|x̃1〉) > ed(1−2ρ)−2

)
∩ (A = X)

)
(law of total probability)

≤
N−1∑
q=0

∑
X∈Pq

pq(1− p)N−1−qP

(∑
k∈X

exp (〈xk|x̃1〉) + (N − 1− q)eβd > ed(1−2ρ)−2|A = X

)
(Bayes)

Then notice that since all patterns are randomly generated, and thus identically distributed, the probability that

A is an arbitrary subset of {2, ..., N} of size q is the same as the probability that A = {2, . . . , q + 1}, therefore

by the binomial theorem, the above is equal to

=

N−1∑
q=0

(
N − 1

q

)
pq(1− p)N−1−qP

(
q+1∑
k=2

exp (〈xk|x̃1〉) > ed(1−2ρ)−2 − (N − 1− q)eβd|A = {2, . . . , q + 1}

)

We now take the pattern which has maximum overlap with x̃1 as an upper bound. We note two things: first,

taking the maximum over the set {2, . . . , q + 1} inside the probability is equivalent to a union (either x2 or

x3 or ... or xq+1 produces the maximum inner product), and secondly, since all q + 1 patterns are identically

distributed, the probability that either on of them produces the maximum inner product is the same. Using

these facts, we get

≤
N−1∑
q=0

(
N − 1

q

)
pq(1− p)N−1−qP

(
max

k∈{2,...,q+1}
exp (〈xk|x̃1〉) >

1

q
(ed(1−2ρ)−2 − (N − 1− q)eβd)|A = {2, . . . , q + 1}

)

≤
N−1∑
q=0

q

(
N − 1

q

)
pq(1− p)N−1−qP

(
exp (〈x2|x̃1〉) >

1

q
(ed(1−2ρ)−2 − (N − 1− q)eβd)|A = {2, . . . , q + 1}

)
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where the last line arises as an application of Boole’s inequality. Notice that in the final expression above, the

probability statement which is conditioned on A = {2, . . . , q + 1} only depends on the index 2 (i.e. the pattern

x2), therefore by Bayes theorem the above simplifies to

=

N−1∑
q=0

q

(
N − 1

q

)
pq(1− p)N−1−q

P
(
exp (〈x2|x̃1〉) > 1

q (ed(1−2ρ)−2 − (N − 1− q)eβd) ∩ 2 ∈ A
)

P(2 ∈ A)

≤
N−1∑
q=0

q

(
N − 1

q

)
pq(1− p)N−1−q

(
r(q)

p

)

where r(q) = P
(
exp (〈x2|x̃1〉) > 1

q (ed(1−2ρ)−2 − (N − 1− q)eβd)
)
gives a larger probability, since the event is

less restrictive. In summary, we have:

P

(
N∑
k=2

e2exp (〈xk|x̃1〉) > ed(1−2ρ)

)
≤
N−1∑
q=0

q

(
N − 1

q

)
r(q)pq−1(1− p)N−1−q (35)

Part 4 We will now split the sum in equation (28) into two parts, q ∈ {0, . . . , b2p(N − 1)c} and the remaining,

and bound each one separately. We will begin by bounding the second half of the sum first, using the identity

q
(
N−1
q

)
= (N − 1)

(
N−2
q−1
)
and the trivial fact that r(q) ≤ 1 to obtain

N−1∑
q=b2p(N−1)c+1

q

(
N − 1

q

)
r(q)pq−1(1− p)N−1−q (36)

≤ (N − 1)

N−1∑
q=b2p(N−1)c+1

(
N − 2

q − 1

)
pq−1(1− p)N−2−(q−1) (37)

= (N − 1)P(XN−2,p ≥ b2p(N − 1)c) (38)

≤ (N − 1)P(XN−2,p ≥ 3
p

2
(N − 2)) (39)

where XN−2,p is, as per part 2 of the proof, a binomially distributed random variable21. Additionally, we have

used the bound b2p(N − 1)c > 3
2p(N − 2), which is a consequence of the fact that p(N − 1) goes to infinity

as d → ∞, which we will show later. Finally, if we have that if we choose ε = p
2 then, by the result given by

equation (22), we have

N−1∑
q=b2p(N−1)c+1

q

(
N − 1

q

)
r(q)pq−1(1− p)N−1−q ≤ (N − 1)exp

(
−p(N − 2)

12

)

Part 5 We will now bound the first part of the sum in the RHS of equation (28). We first notice that

1

q
(ed(1−2ρ)−2 − (N − 1− q)eβd) =

1

q
(ed(1−2ρ)−2 − e(α+β)d) + eβd

by definition of N . Consequentially, we must have that r(q) is increasing in q if α+ β < 1− 2ρ22 - we will prove

this inequality later on. If we assume this to be the case then
21The inequality from lines (30) to (31) is simply the definition of the cumulative distribution function.
22we can ignore the -2 in the exponent since we are considering d→∞
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b2p(N−1)c∑
q=0

(
N − 1

q

)
pq−1(1− p)N−1−qqr(q)

≤ 1

p
max

q∈{0,...,b2p(N−1)c}
qr(q) (CDF of binomial ≤ 1)

≤ 2(N − 1) · r(2p(N − 1))

Now, recall from part 2 (equation (26)) of the proof that p < e−dI(β), therefore together with all of the above we

observe that

r(2p(N − 1)) = P
(
exp(〈x2|x̃1〉) >

e−αd

2p
(ed(1−2ρ)−2 − e(α+β)d) + eβd

)
= P

(
exp(〈x2|x̃1〉) >

1

2p
(ed(1−2ρ−α)−2 − eβd) + eβd

)
≤ P

(
exp(〈x2|x̃1〉) >

1

2
(ed(1−2ρ−α+I(β))−2 − e(β+I(β))d)

)
We would now like to show, regarding the powers in the RHS of the inequality of the probability statement

above, that 1− 2ρ− α+ I(β) > β + I(β) ⇐⇒ 1− 2ρ− α > β such that the first term dominates the second in

the final expression above for sufficiently large d. By concavity we have for x ∈ (0, 1):

I(x) ≤ log
(

(1 + x)2

2
+

(1− x)2

2

)
= log(1 + x2) ≤ x2 ≤ x

From this, and the definitions and inequalities established in part 2 of the proof, we obtain

α+ β < α+ β0 = α+ I(α) ≤ 2α < I(1− 2ρ) ≤ 1− 2ρ

This proves that 1− 2ρ− α+ I(β) > β + I(β) and also proves that r(q) is increasing in q, as required above.

Now, take γ such that 1− 2ρ− ε < γ < 1− 2ρ− ε
2 for some ε > 0. Then, continuing from the inequality above

and using the result from equation (25), we have

1− 2ρ− ε < γ < 1− 2ρ− α+ I(β)

which in turn leads us to conclude that, for d sufficiently large and by the result given by equation (24), we get:

r(2p(N − 1)) ≤ P
(
exp(〈x2|x̃1〉) > eγd

)
≤ exp(−dI(γ))

Part 6 Bringing everything together we get:
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P
(
∃k ∃i : Ti(x̃k) 6= xki

)
≤ d ·NP

(
N∑
k=2

e2exp (〈xk|x̃1〉) > ed(1−2ρ)

)

≤ d ·N
[
2(N − 1)exp(−dI(γ)) + (N − 1)exp

(
−p(N − 2)

12

)]
= d ·N

[
2

(N − 1)
exp (−d(I(γ)− 2α)) +

1

(N − 1)
exp

(
2dα− N − 2

N − 1

p(N − 1)

12

)]
≤ 2d ·N

(N − 1)
exp (−d(I(γ)− 2α)) +

d ·N
(N − 1)

exp
(

2α− N − 2

N − 1

p(N − 1)

12

)
Finally, to see that this upper bound vanishes in the limit, notice that by definition of γ we have I(γ) > 2α, so

the first term clearly tends to zero. For the second term, by using the lower bound on p - equation (27) - we get:

p(N − 1) ≥ exp(d(α− I(β)− η))

But we know, by definition, that I(β) < I(β0) = α and η = 1
2 (α− I(β)), so α− I(β)− η > 0. Therefore, the

second term also tends to zero. Also, a straightforward consequence of the bound above is that p(N − 1) goes

to infinity as d → ∞ and therefore confirms the assumption used above that b2p(N − 1)c > 3
2p(N − 2). In

conclusion we have that, so long as α < I(1− 2ρ)/2, we obtain

P
(
∃k ∃i : Ti(x̃k) 6= xki

)
→ 0 as d→∞

which concludes the proof.
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Appendix C: Code

All code used to generate the results for this report may be found at:

https://github.com/JeremyDouglas91/Hopfield-Networks
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