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Abstract
We applied the following methods to resting-state EEG data from patients with disorders of consciousness (DOC) for con-
sciousness indexing and outcome prediction: microstates, entropy (i.e. approximate, permutation), power in alpha and delta 
frequency bands, and connectivity (i.e. weighted symbolic mutual information, symbolic transfer entropy, complex network 
analysis). Patients with unresponsive wakefulness syndrome (UWS) and patients in a minimally conscious state (MCS) were 
classified into these two categories by fitting and testing a generalised linear model. We aimed subsequently to develop an 
automated system for outcome prediction in severe DOC by selecting an optimal subset of features using sequential floating 
forward selection (SFFS). The two outcome categories were defined as UWS or dead, and MCS or emerged from MCS. 
Percentage of time spent in microstate D in the alpha frequency band performed best at distinguishing MCS from UWS 
patients. The average clustering coefficient obtained from thresholding beta coherence performed best at predicting outcome. 
The optimal subset of features selected with SFFS consisted of the frequency of microstate A in the 2–20 Hz frequency 
band, path length obtained from thresholding alpha coherence, and average path length obtained from thresholding alpha 
coherence. Combining these features seemed to afford high prediction power. Python and MATLAB toolboxes for the above 
calculations are freely available under the GNU public license for non-commercial use (https ://qeeg.wordp ress.com)

Keywords Quantitative EEG · Unresponsive wakefulness syndrome · Minimally conscious state · Outcome prediction · 
Microstate analysis · Sequential floating forward selection

Introduction

Severe disorders of consciousness (DOC) are states of 
unconsciousness caused by injury or malfunction of neural 
systems which regulate arousal and awareness (Posner et al. 
2007; Giacino et al. 2014). Despite significant advances in 
medical technology, patients with DOC may remain in a veg-
etative state, also known as unresponsiveness wakefulness 
syndrome (UWS), characterised by arousal without aware-
ness (Laureys et al. 2010), or a minimally conscious state 
(MCS), defined by definite but minimal behavioural signs 
of awareness of oneself and one’s environment, which may 
wax and wane (Giacino et al. 2002). For ethical, therapeutic 
and economic reasons, it is important to predict outcome as 
early, reliably and sensitively as possible (Graf et al. 2008; 
Grill et al. 2013; Lopez-Rolon et al. 2015).

The best criterion available to date for establishing the 
diagnosis of UWS or MCS is behavioural assessment by 
means of the clinical scales such as the revised version of 
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the coma recovery scale (CRS-R). However, although every 
effort is made in clinical settings to avoid it, patients who 
do understand CSR-R commands, but are unable to follow 
them due to motor impairments could potentially receive a 
wrong UWS diagnosis.

Finding more accurate methods for discriminating DOC 
diagnostic groups is imperative, considering that diagnosis 
has a direct impact on decisions regarding life-sustaining 
therapy (Howell et al. 2013), and misdiagnosis prevalence 
has been reported to be possibly as high as 43% (Howell 
et al. 2013).

Electroencephalography (EEG) is a non-invasive, safe 
and relatively easy method for gauging the function of the 
brain, which allows the application of quantitative meth-
ods to better understand and interpret patterns of EEG data 
related to DOC (Kondziella et al. 2016). Applied to DOC, as 
expected these methods are focussed on the objective assess-
ment of EEG signals and aim to detect subtleties that may 
escape visual inspection, thus minimising subjectivity and 
human error in prognostication (Schorr et al. 2015, 2016). 
Thus, these methods may expand the manner in which EEG 
is currently used in clinical practice by providing a more 
rigorous, objective and statistically coherent analysis of 
the data through the mathematical extraction of descrip-
tive parameters (Gosseries et al. 2011). High-density EEG 
techniques in particular are a promising avenue of research, 
which is playing increasingly an important role in diagnosis 
and prognosis (Noirhomme and Laureys 2014).

However, researchers are still to find EEG features, which 
could index consciousness in such a manner as to be able to 
substitute reliably behavioural assessment in diagnosis and 
outcome prediction, where outcome categories are defined 
here as UWS or dead, and MCS or better.

In the present exploratory study we applied to resting-
state, high-density EEG data from patients with DOC the 
following methods to examine the extent to which they could 
be used for consciousness indexing and outcome prediction: 
microstates, entropy (i.e. approximate, permutation), power 
in alpha and delta frequency bands, and connectivity (i.e. 
weighted symbolic mutual information, symbolic transfer 
entropy, complex network analysis). These are techniques 
that are commonly applied in EEG studies, but it remains 
unclear the relative performance of each metric in assessing 
consciousness. The aim then is to be able to assess these 
measures on a single dataset as well as apply and evaluate 
EEG measures that aren’t ordinarily applied in DOC studies. 
This allows us then to apply machine-learning techniques 
to build a model to predict coma outcome, which may be a 
viable method to provide information on an individual basis, 
as opposed to group differences, as often done in DOC stud-
ies (Noirhomme et al. 2015).

To build the model, we extracted an optimal subset of 
features using sequential forward floating selection (SFFS), 

which is an algorithm selects a subset of EEG features by 
starting from an empty set and adding incrementally one fea-
ture at a time and deleting them conditionally while avoiding 
partially the local optima of the correct classification rate 
(Ververidis and Kotropoulos 2008).

The present exploratory study used standardized clini-
cal evaluations at baseline and follow-up by means of the 
CRS-R to minimize misdiagnosis, which could also influ-
ence the analysis of EEG features. As noted in the review 
by Noirhomme et al. considerable limitations of machine-
learning applied to EEG is the difficulty in establishing a 
reliable behavioural assessment and fluctuations in the 
patient’s level of arousal (Noirhomme et al. 2015). In the 
absence of a gold standard to assess consciousness, consil-
ience between multiple independent assessments might be a 
rational way forward as applied in the study by Chennu et al. 
(2017). In this study, the authors compared EEG measures to 
results obtained from positron emission tomography, which 
may be a useful method of validating EEG studies. Another 
important consideration is the sample size needed in such 
machine-learning studies to ensure robustness and generaliz-
ability of results—for example, in the review by Noirhomme 
et al., they only consider studies with over 50 patients, but it 
remains unclear whether that is sufficient. However, it may 
still be illuminating as a starting point to observe how vari-
ous biomarkers compare on a small sample size.

We must also note that we do not aim to address known 
limitations of the techniques evaluated in this study, but to 
investigate several EEG biomarkers of consciousness on the 
same dataset to be able to compare the relative usefulness 
of these features. We also aimed to apply measures that are 
ordinarily applied to index consciousness to instead predict 
outcome, thus avoiding the complication of assessing prog-
nosis through diagnosis.

Microstate Analysis

Microstate analysis is a spatio-temporal method that analy-
ses the topographical maps of electrical potentials over the 
electrode array as well as the temporal evolution of these 
topographies, such that multichannel EEG data is essentially 
considered as a series of sequential topographies of elec-
tric fields (Pascual-Marqui et al. 1995). Interestingly, most 
studies find that four archetypal maps account for over 70% 
of total topographical variance, and furthermore that EEG 
topography remains quasi-stable for about 80–120 ms before 
abruptly changing into a topography represented by a dif-
ferent archetypal map (Murray et al. 2008). Microstates are 
thus defined as these archetypal maps of quasi-stability, dur-
ing which global topography is invariant, although electric 
field strength may vary and polarity invert (Lehmann et al. 
1987). The four topographies that are the most commonly 
exhibited are,
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A right-frontal to left-posterior
B left-frontal to right-posterior
C frontal to occipital
D mostly frontal and medial to slightly less occipital activ-

ity than class C

It has been suggested that microstates reflect primitive infor-
mation processing such that their generation is likely the 
result of the activity of distinct neural arrays associated with 
specific neural functions (Lehmann et al. 1998). Microstate 
analyses have proven to be useful in classifying transitive 
brain states. For example, it has been shown that microstate 
B in schizophrenics displays significantly different field con-
figurations and shorter durations in patients than controls 
(Lehmann et al. 2005). Furthermore, microstate analyses 
have been applied to investigate differences in sleep stages 
between narcoleptic patients and controls and to probe the 
brain in different sleep stages (Kuhn et al. 2015; Brodbeck 
et al. 2012). This is a promising avenue of research consider-
ing that microstate analyses have been successful in probing 
the brain in different states, potentially allowing for the dis-
crimination of patients in UWS/MCS states. Furthermore, 
such analyses might help us to understand key differences 
in the brain functions of patients with different severities 
of coma. As far as we know, microstate analyses have not 
previously been employed in this manner for the investiga-
tion of DOC and DOC outcome prediction, and may be an 
interesting topic of future research. In this paper, however, 
we do not intend to make biological claims between DOC 
patients in different outcome groups, but rather assess how 
predicative this common EEG technique in assessing con-
sciousness as well as coma outcome.

Entropy

Measures of entropy applied to EEG signals aim to quantify 
the unpredictability of outputs of the complex system of neu-
ral networks underlying consciousness. Numerous measures 
of entropy have been applied to the analysis of EEG signals, 
particularly in the studies of anesthesia and epilepsy (Bruhn 
et al. 2000; Kannathal et al. 2005). However, measures of 
entropy, such as approximate entropy (ApEn) and permuta-
tion entropy specifically, are increasingly being investigated 
with relation to coma and consciousness, with some interest-
ing preliminary results. For example, Sarà et al. have shown a 
correlation between ApEn measures and outcome of patients 
with UWS (Sarà et al. 2011), although Gosseries et al. found 
entropy to only be useful in diagnosis, and not prognosis 
(Gosseries et al. 2011). The present study extends the work 
of previous studies in analysing ApEn as a predictor of DOC 
outcome, and also investigates the prognostic value of permu-
tation entropy as explored for the first time, as far as we know. 
These measures of entropy are potentially useful because they 

are scale-invariant, robust to noise, and discriminate series for 
which clear feature recognition is difficult (Pincus 1995; Pin-
cus and Singer 2014).

Approximate Entropy

Conceptually, approximate entropy (ApEn) is defined as the 
logarithmic likelihood that the patterns of data that are close to 
each other will remain close on following, incremental compar-
isons. Mathematically, ApEn is determined as follows: Given 
a segment of EEG of N time samples, [u(1), u(2),… , u(N)] , 
and an arbitrary value m, a sequence of vectors 
[x(1), x(2), … , x(N − m + 1)] in m-dimensional space can be 
constructed such that x(i) = [u(i), u(i + 1), … , u(i + m − 1)]. 
Using x(i), and additional quantity, Cm

i , can be calculated:

where r is an arbitrary tolerance. This can be used to define

such that

Permutation Entropy

In contrast to ApEn, permutation entropy (PerEn) makes use of 
the symbolic transform, such that the signal is represented by a 
sequence of discrete symbols, the probability density of which 
is analysed to obtain the entropy. Symbolization of EEG data 
is a useful practice because it reduces sensitivity to noise, sim-
plifies computational evaluations, and consequently increases 
efficiency in quantifying information from a complex dynami-
cal system (Daw et al. 2003). The transformation involves the 
extraction of sub-vectors of the signal, like in the case of ApEn, 
each composed of voltages at m time points separated by a 
fixed time delay, � . For example, given a segment of EEG of N 
time samples, [u(1), u(2), … , u(N)] , a set of subvectors can be 
constructed, [x(1), x(2), … , x(N − m + 1)] , where a subvector 
is defined as x(i) = [u(i), u(i + �), … , u(i + (m − 1) × �)] . 
Each x(i) is then represented by a symbol (or equivalently a 
number between 1 and m!) dependent on the order of ampli-
tudes of the signal which comprise the subvector. Permutation 
entropy can then be calculated as,

where pi is the probability of occurrence of the ith symbol.

(1)Cm
i(r) =

number of x(j) such that |x(i) − x(j)| < r

N − m + 1

(2)�m(r) =
1

N − m + 1

N−m+1∑

i=1

log(Cm
i(r))

(3)ApEn = �m(r) − �m+1(r)

(4)PerEn = −

m!∑

i=1

pi log(pi)
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Power in Alpha and Delta Frequency Bands

Some studies have shown that differences in power spectra 
exist between patients with DOC and healthy controls, as 
well as between UWS and MCS patients (Lehmann et al. 
1987; Blume et al. 2015; Stender et al. 2015). In particular, 
these studies have indicated that patients with DOC exhibit 
reduced power in the alpha band and increased power in 
the delta band, with a more severe difference presented in 
the UWS than the MCS. We verified these results by estab-
lishing how accurately power in these bands differentiate 
patients in the UWS and MCS, and furthermore we deter-
mine the effectiveness of using spectral power in these fre-
quency bands to prognosticate in DOC.

Connectivity

Previous research has been done into comparing the brain 
connectivity of UWS and MCS through indices such as 
coherence, the imaginary part of coherence, weighted sym-
bolic mutual information and symbolic transfer entropy, 
all of which are further explored in this study (Lehembre 
et al. 2012; King et al. 2013; Lee et al. 2015). These indi-
ces provide insight into the degree of integration and con-
nection of networks in the brain by assessing connectivity 
between electrode signals. Previous research tend to agree 
that patients in UWS display significantly lower connectivity 
than MCS patients in the theta and alpha bands, indicating 
that the level of connectivity could be related to the severity 
of the disorder. Connectivity is likely to correlate to greater 
brain activity in terms of information sharing and process-
ing, and therefore also to behavioural signs of consciousness, 
thus warranting further investigation in this area.

Coherence

Coherence quantifies the degree of coupling of frequency 
spectra between two electrodes, and can be calculated for a 
frequency f as,

where Gxy(f ) is the cross-spectral density of x and y, where x 
and y are time-series of voltages recorded at different elec-
trodes, and Gxx(f ) and Gyy(f ) are the auto-spectral densities of 
x and y respectively. Coherence has the significant disadvan-
tage of being contaminated by volume conduction, which is 
the transmission of electrical signals from a primary source 
through brain tissue (Nunez et al. 1997). To overcome this 
issue, and thereby provide a more accurate reflection of brain 

(5)Cxy(f ) =
|Gxy(f )|2

Gxx(f )Gyy(f )

interactions, one approach is to consider only the imaginary 
part of coherence since volume conduction only affects the 
real part of coherence. It is not necessarily the intention of 
this paper to correct the shortcomings or address the limi-
tations of techniques applied in EEG research, but rather 
investigate techniques that are commonly applied in EEG 
research. This paper thus considers both magnitude-squared 
coherence as well as imaginary coherence the both are meas-
ures often justified by EEG researchers. We also note that 
the position of the reference electrode affect the possible 
network topologies generated, but we do not intend to make 
claims about the absolute values of coherence, but rather 
differences between patients groups (for which the reference 
electrode was located at the vertex for all patients).

Weighted Symbolic Mutual Information

Weighted symbolic mutual information (wSMI) is based on 
principles of permutation entropy applied to the quantifica-
tion of global information sharing (King et al. 2013). Once 
having symbolically-transformed the signal as in the case for 
permutation entropy, the method assesses the joint occur-
rences of symbolic or qualitative fluctuations in the signal, 
thus robustly detecting non-directional nonlinear coupling. 
To account for spurious correlations produced by artifacts 
(such as those from volume conduction), wSMI disregards 
trivial conjunctions of symbols across two signals, corre-
sponding to conjunctions of identical symbols, as well as 
conjunctions of opposite symbols. This is achieved by attrib-
uting a zero weight to symbol pairs as indicated on the joint 
probability matrix illustrated in Fig. 1.

wSMI can then be calculated as,

where x̂ and ŷ are symbols present in signals X̂ and Ŷ respec-
tively, p(x̂, ŷ) is the joint probability of co-occurrence of x̂ 
and ŷ , p(x̂) and p(ŷ) are the probabilities of x̂ and ŷ in X̂ and 
Ŷ  , respectively. Lastly, w(x̂, ŷ) represents the weights (0 or 
1) as described in Fig. 1. The reasoning behind the zero-
weighting is that conjunctions of identical symbols may be 
elicited by a common source, and conjunctions of opposite 
symbols may reflect opposite sides of a common electric 
dipole.

Symbolic Transfer Entropy

Transfer entropy (TE) quantifies the directional transfer of 
information by assessing the uncertainty of the current value 
of voltage at one electrode position Y knowing past voltages 
at another position X compared to the uncertainty in the 
voltage at Y only knowing past voltages at Y. TE is based on 

(6)

wSMI(X̂, Ŷ) =
1

log(k!)

∑

x̂∈X̂

∑

ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log
p(x̂, ŷ)

p(x̂)p(ŷ)



852 Brain Topography (2018) 31:848–862

1 3

Granger Causality, a linear regression model that quantifies 
the causal interaction between a source signal X and target 
signal Y:X is said to Granger-cause Y if the inclusion of the 
past of X improves the prediction of Y (Barnett et al. 2009) . 
TE thus differs from Granger Causality in that it is framed in 
terms of resolution of uncertainty, not in terms of prediction. 
However, it has been shown that TE is equivalent to Granger 
causality under Gaussian assumptions (Barnett et al. 2009). 
Granger Causality is known to produce spurious results due 
to its linearity, sensitivity to noise, and sensitivity to band-
pass filtering. TE is a robust, nonlinear approach that was 
consequently introduced to address these limitations (Lee 
et al. 2015). However, we did not evaluate the possibility 
of spuriousness correlation with regards to TE, but instead 
employed this technique as is commonly performed in EEG 
research.

TE offers a model-free estimation of the direction and 
strength of connectivity between two signals, X and Y, 
and can be defined as the measure of mutual information 
between the past of X, (XP), and the future of Y, (YF), when 
the past of Y, (YP) is already known.

Mathematically,

TE can be quite complex to determine because of the diffi-
culty in estimating probability density functions from finite, 
irregular data. Moreover, to do so, data is quantised into 

(7)TEX→Y =
∑

P(YF, YP,XP) log

[
P(Yf |YP,XP)

P(YF, YP)

]

equally-spaced bins, and it has been shown that TE estimates 
are dependent on this arbitrary choice in bin-size. To over-
come this, we investigated symbolic transfer entropy, which 
quantifies TE of symbolically transformed data without the 
need for binning or advanced estimators of the probability 
density function.

Complex Network Analysis

Measures of connectivity can be employed in complex net-
work analysis which aims to represent complex systems 
as networks and extract meaningful information from the 
topologies of these networks. Complex network analysis 
may be a particularly insightful tool because it allows for 
the exploration of structural–functional connectivity rela-
tionships by defining functional connections with respect 
to the spatial map of the brain. In EEG analyses, networks 
can be constructed by considering the electrode positions 
as nodes and the links between nodes as functional con-
nections, as quantified by measures described above. The 
topology of these networks can be assessed and compared 
through graph-theoretical measures, such as the clustering 
coefficient and characteristic path length. The clustering 
coefficient of a network can be computed by examining tri-
plets, which are defined as three nodes with at least two 
links. Specifically, the clustering coefficient is defined as 
the number of closed triplets (groups of three nodes which 
are maximally interconnected) divided by the total number 
of triplets. The clustering coefficient is thus a micro-scale 
measure that provides an indication of clustered connectiv-
ity around individual nodes, which in turn is indicative of 
segregated neural processing. Conversely, characteristic 
path length provides insight into macro-scale functioning 
by quantifying functional integration: the ability to com-
bine specialized information from distributed brain regions. 
Characteristic path length is defined as the average number 
of steps along the shortest paths for all possible pairs of 
nodes, where each path represents a potential route of infor-
mation flow between two brain regions.

Complex network analyses applied to EEG analysis are 
beginning to gain interest with promising results. Chennu 
et al. calculated numerous graph theoretic statistics from 
EEG data including the clustering coefficient, path length, 
modularity, participation coefficient and network-level mod-
ular span and found that connectivity as assessed by these 
metrics correlated well with positron emission tomography 
(Chennu et al. 2017). Furthermore, they found that these 
networks correlate strongly with brain metabolism.

In EEG studies, a network topology can be created by 
thresholding measures of connectivity between electrodes, 
such that a link is said to exist between two electrodes if 
the connectivity between those two electrodes exceed a cer-
tain threshold. In the study by Chennu et al. graph-theoretic 

Fig. 1  The joint probability matrix for a symbol transformation with 
m = 3 . Dark grey blocks are zero-weighted ( w = 0 ) and do not con-
tribute to the wSMI 
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statistics are calculated by thresholding debiased weighted 
phase lag index, but in the present study we threshold the 
coherence because of its prevalence in coma research. The 
position of the reference electrode affects the descriptions 
of connectivity between electrodes, and consequently also 
the network topologies generated, but we do not intend to 
make claims about the absolute values, but rather differences 
between patients groups (for which the reference electrode 
was located at the vertex for all patients).

Method

Selection of Participant Sample

After receiving approval from the local ethics committee, 
we recruited DOC patients consecutively during admission 
to same intensive inpatient neurorehabilitation center in the 
German state of Bavaria. Legal representatives of partici-
pants gave written informed consent. Patients were not under 
sedation during EEG recording. The resulting participant 
sample contains only data from patients, who were avail-
able for a follow-up on their consciousness level at or after 
discharge from neurorehabilitation. The state of conscious-
ness both at baseline and follow-up was assessed with the 
CRS-R. Details on inclusion and exclusion criteria as well as 
other study protocol related information have been published 
elsewhere (Grill et al. 2013).

Procedure

Prior to recording 5 min of high-density resting state EEG 
for each patient, we assessed the level of consciousness of 
patients with the CRS-R. Patients were in the supine position 
with eyes closed. The standard CRS-R arousal facilitation 
protocol was used to maintain the patient in a state of arousal 
during EEG recording.

Data

Data consists of resting-state data recorded at a sampling 
rate of 1000 Hz with a 256 channel high-density geodesic 
sensor net with Net Amps 300 amplifier and Net Station 
4.5. software (Electrical Geodesic Inc., Eugene, OR, USA). 
During recording, electrodes were referenced to the vertex 
and impedances were kept under 50 kΩ . Data were high-pass 
filtered at 0.1 Hz to eliminate slow drifts and subsequently 
segmented into trials of two seconds, such that all described 
analyses are performed on the same resting-state data of 
two seconds in duration. Trials with eye-movement artefacts 
exceeding 55 μ V and eye-blinks artefacts exceeding 140 μ V 
were automatically removed. To determine channel outli-
ers, we examined the distributions of the maximum voltage 

difference across all channels in that trial. If a channel exhib-
ited a maximum change that was greater than five standard 
deviations, that channel was removed from analysis in that 
trial. This resulted in at most one to two channels being 
excluded in a single trial. Each analysis described in this 
paper was performed using ten trials.

Statistical Analysis

We analysed data using both MATLAB Release 2014b 
(Mathworks, Sherborn, Massachusetts, USA) and Python. 
To determine the predictive power of the measures explored 
in this study, patients were classified into one of two groups 
(UWS or MCS for diagnosis and UWS or dead, and MCS 
or better for prognosis) by fitting a generalised linear model 
(GLM) on training data, and testing the model on test data. 
Additionally, to avoid over-fitting and circular analysis, a 
ten-fold stratified cross-validation scheme was implemented. 
The performance of the classifiers was then investigated 
using receiver operating characteristic (ROC) curves. The 
ROC curve illustrates the performance of a binary classi-
fier by plotting the true positive rate (sensitivity) against the 
false positive rate (1—specificity) as the threshold is varied. 
The outputs of the GLM are thresholded at values ranging 
between 0 and 1, thus binarizing the output of the GLM. 
These binary outputs are then compared to the actual labels 
(UWS vs. MCS, or improved vs. unimproved) represented 
by 0 and 1 s, allowing for the calculation of specificity and 
sensitivity. Each threshold yields a pair of values (one value 
for specificity and one for sensitivity), corresponding to one 
point on the ROC curve.

We calculated the area under the curve (AUC) of ROC 
curves to determine which features exhibited significant dif-
ferences across groups of patients. The area under the curve 
(AUC) of a ROC provides a measure of classification accu-
racy, such that an of 100% indicates perfect classification 
(there is some value of the threshold parameter for which 
there is both perfect sensitivity and specificity) and 50% indi-
cates random classification. Significance of the AUC was 
established by randomly permuting the elements of feature 
vectors and comparing the results using the non-parametric 
Kruskal–Wallis test (Mason and Graham 2002).

Finally, to account for multiple comparisons, the false 
discovery rate was controlled by employing the Benja-
mini–Hochberg procedure at level = 0.05 . The procedure 
is as follows: the p values, p1,… , pm , corresponding to the 
null hypotheses (features tested), H1,… ,Hm , are sorted in 
increasing order. Each p value is compared to the Benja-
mini–Hochberg critical value, i

m
� , where i is the rank and 

m is the number of hypotheses. The largest p value that is 
less than the critical value is considered to be significant, 
as well as all p values smaller than it. Adjusted p values are 



854 Brain Topography (2018) 31:848–862

1 3

calculated as raw p values multiplied by m
i
 , and are reported 

in this study as q values.

Microstate Analysis

We performed a microstate segmentation following a proto-
col employed in previous studies (Koenig and Melie-Garca 
2010). Specifically, we transformed EEG data to the aver-
age-reference, calculated the global field power (GFP) for 
each trial, and extracted topographic maps at time points of 
GFP local maxima, which correspond to times of greatest 
signal-to-noise ratio. The GFP is the standard deviation of 
the voltages recorded at all channels at each time point, and 
can be calculated as,

where ui is the voltage at electrode i, ūi is the average voltage 
of all electrodes, and N is the number of electrodes.

These maps at GFP maxima are assimilated for all tri-
als, and clustered into a predetermined number of clusters 
using both a modified k-means and a “topographical atomise 
and agglomerate hierarchical clustering” algorithm (Murray 
et al. 2008). Here, the data was analysed using both clus-
tering methods to account for potential differences in the 
microstates obtained using the different clustering methods.

Microstates in the delta (0–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), and 2–20 Hz frequency bands were obtained after 
having filtered data in the respective frequency bands using 
a second-order Butterworth filter. For each frequency band, 
the following outputs were obtained for each patient,

– EEG scalp topographies when data is segmented into four 
microstates.

– The average number of times a microstate appears in a 
trial of EEG data.

– The average duration of each microstate in a trial.
– The average percentage of time spent in each microstate.

To achieve this, firstly four global microstates were obtained 
by pooling all patient data and clustering topographies to 
obtain the four microstates: A, B, C and D. Figure 2 shows 
global microstates obtained for patients in the two different 
outcome groups. We note that in our microstate analysis we 
use the same archetypal microstates (calculated by pooling 
data for both improved and unimproved conditions) which 
have the same general characteristics as those shown in 
Fig. 2 for classes A, B, C and D.

For each patient, the topographies at GFP maxima were 
then compared with each global microstate by computing 
squared correlation coefficients so as to disregard polarity. 

(8)GFP =

�∑N

i=1
(ui − ūi)

2

N Each topography was then assigned to a microstate class A, 
B, C or D dependent on the global microstate with which 
it best correlated, so that this process is much like a modi-
fied k-means clustering algorithm with the global maps as 
seed maps. The first spatial principal component was calcu-
lated for each microstate class to obtain four representative 
maps for each patient, which were then used in subsequent 
analyses.

For each patient, topographies at GFP maxima were com-
pared to each microstate class by calculating squared cor-
relation coefficients, and assigned to the class with which 
they best correlated. The average frequency, duration and 
percentage of time spent in each microstate were then deter-
mined, considering that EEG topographies remain stable 
between GFP minima as determined by previous research 
(Michel 2009). This procedure is illustrated in Fig. 3.

Entropy

Approximate Entropy

In order to be able to compare the ApEn of both patient 
groups we calculated ApEn with a short embedded dimen-
sion (m) template of 2, and a wide tolerance (r) and time 
delay (tau) equal to 0.2 × (standard deviation of data) , as 
suggested by previous seminal research aiming to avoid 
the penalties associated with parameters lacking sufficient 
rigor (Pincus and Goldberger 1994; Pincus 1995; Bruhn 
et al. 2000; Pincus 2001). This approach has been adopted 
widely in EEG studies within and outside DOC research 
because such a normalization of r allows ApEn to remain 
“unchanged under uniform process magnification, reduction, 
or constant shift to higher or lower values” (Abásolo et al. 
2005), which yields an ApEn unaffected by scale and transla-
tion (Ocak 2009; Sarà et al. 2011; Liang et al. 2015). ApEn 
was calculated separately for ten trials for each patient in 

Fig. 2  Global microstate classes, A, B, C and D, obtained in the 
0–4, 4–8, 8–13 and 0–20 Hz frequency bands, obtained globally for 
patients in the different outcome groups
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the delta, theta, alpha and beta (13–35 Hz) frequency bands 
for each channel. Furthermore, it is not within the scope of 
this paper to attempt to optimize various parameter values, 
but rather to explore existing quantitative methods in the 
way that they are currently implemented. Additionally, it 
is the comparison of the ApEn in the two different patient 
groups that is important (not the absolute value of ApEn) 
that is important in this study. These values were then aver-
aged over the trials and over the channels to obtain a single 
descriptor as a feature in the classification scheme.

Permutation Entropy

We calculated permutation entropy over ten trials for each 
channel in the delta, theta, alpha and beta bands separately, 
using a time delay of one sample and an embedding dimen-
sion m of 3: Fig. 1 provides an illustration of the 3! = 6 
possible symbol representations of sub-vectors. Feature vec-
tors for the classification scheme were obtained in a similar 
manner to those in the ApEn analysis.

Power in Alpha and Delta Frequency Bands

We obtained relative power values in the alpha and delta 
bands by computing the power in these bands as a fraction 
of the power across 1–50 Hz, which were then used as fea-
tures in the classification scheme. We employed a multitaper 
method to overcome some of the limitations of conventional 
Fourier analysis. In principle, to describe a system in the 
frequency domain, an output sample of infinite length is 
needed. Moreover, infinitely many realisations of this out-
put are needed to capture stochastic properties, which in 

most scenarios is not possible. Typically, the output is only 
observed as a single realisation with finite length, which 
often results in spectral estimates that are biased and exhibit 
high error variance (Babadi and Brown 2014).

To remedy this, we obtained several periodograms by 
multiplying the EEG signal with Slepian sequences, a family 
of mutually orthogonal tapers (windows), which addition-
ally have optimal time–frequency concentration properties 
(Van De Ville et al. 2002) These periodograms (each one 
obtained using a different Slepian sequence as a window) 
were then averaged to produce the multitaper power spectral 
density estimate. Slepian sequences, ĥn , are defined as the 
eigenvectors of,

where N is the number of time samples of EEG data for one 
channel, and W is a half-bandwidth that defines a small fre-
quency band centred around [1] f. Here, we chose [2] W of 
0.002, and made use of the first 7 Slepian sequences based 
on the value of the corresponding eigenvalues.

Connectivity

Coherence

Magnitude-squared coherence and the imaginary part of 
coherence were calculated for each patient for each pair of 
electrodes in the delta, theta, alpha and beta frequency bands 
and averaged over 10 trials. [3] The median value of coher-
ence for each electrode was then determined, and the mean 
of these median values used as a feature in the classification 
scheme.

Weighted Symbolic Mutual Information

To calculate wSMI, we transformed EEG data symbolically 
in the same way as has been described for the calculation of 
permutation entropy: data points are divided into subvectors 
of dimension m, with each element in the sub-vector sepa-
rated by a fixed time delay, � , similarly to the embedding 
performed for the calculation of permutation entropy. wSMI 
was calculated as described previously in the delta, theta, 
alpha and beta frequency bands with m of 3 and of 4, 8 and 
32 time samples. These parameters were chosen based on 
the work of King et al. who first described the method (King 
et al. 2013). The authors note that different � values are spe-
cific to different frequency bands, and note the importance 
of applying an appropriate low-pass filter before analysis to 
prevent aliasing. By band-pass filtering the signal, one can 
address the potential problem of aliasing as well as further 

(9)
N−1∑

n=0

sin(2𝜋W(m − n))

𝜋(m − n)
ĝn = 𝜆ĝn

Fig. 3  The microstate analysis for one trial of data for one patient. 
Firstly, microstate classes, A, B, C and D, are obtained for each 
patient using a clustering algorithm, and then topographic maps at 
each time point are assigned to a microstate class. The different col-
ours of the GFP curve represent the four microstate classes. The cor-
responding microstate topography at each time point, as well as the 
microstate class, are illustrated beneath the GFP curve
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isolate the frequencies responsible of the wSMI differences 
across consciousness states.

Figure 1 shows the probability matrix used to calculate 
wSMI for an m of 3, and illustrates the 3! = 6 possible sym-
bol representations of sub-vectors. For each patient, wSMI 
was calculated over all electrode pairs and the median value 
determined for each trial. The median values for each of the 
ten trials were then averaged to obtain one value.

Symbolic Transfer Entropy

We transformed EEG data symbolically as described pre-
viously with an embedding dimension of m = 3 and time 
delay � = 1 , and TE calculated for each patient in the delta, 
theta, alpha and beta frequency bands. Feature vectors were 
obtained by averaging TE over all electrodes and over 10 
trials of data.

Complex Network Analysis

The present study makes use of non-directional binary links, 
which incorporates EEG results as shown in Fig. 4, such that 
a link is either present or absent depending on a threshold 
value of the connectivity measure.

We examined both average clustering coefficient and 
characteristic path length, with links between nodes deter-
mined by thresholding values for coherence between elec-
trodes. Coherence in the delta, theta, alpha and beta ranges 
were thresholded at values of coherence of 0.8–0.95, incre-
menting by 0.01. We can thus define a binary link between 
two nodes if the magnitude-squared coherence between the 
two corresponding electrodes is above the threshold. If the 
threshold is too high, very few links between electrodes 
remain making it difficult to infer connectivity patterns, 
and if the threshold is too low very few differences in the 
connectivity graphs are present, making comparisons diffi-
cult. As noted in literature (Bordier et al. 2017), methods of 
determining? optimal? thresholds are widely discussed and 
researched, although it appears that no real consensus has 
been reached on how best to choose such thresholds. Thus, 
we observed empirically (on a different set of data) that 
0.8–0.95 represented a broad enough range such that thresh-
olds within this range represented a compromise between 
overly connected and overly sparse connectivity graphs.

Results

Obtained Participant Sample

As shown in Tables 1 and 2 we performed consciousness 
indexing with EEG data from 62 patients and predicted 
outcome with a subset of 39 patients, who had follow-up 

Fig. 4  A visualisation in the XZ-, XY- and YZ-planes of complex 
network analysis applied to EEG: this is an example of the network 
obtained for one patient when thresholding coherence in the beta 
range at 0.94. The nodes are represented by electrodes and binary 
non-directional links between two electrodes indicate a coherence of 
greater than 0.94 between those electrodes
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EEG data. Mean time elapsed from baseline to follow-up 
was 589.26 ± 1125.32 days. Additional data on the obtained 
sample is available in the online resource.

Consciousness Indexing

Microstate

Percentage of time spent in microstate D in the alpha range 
( AUC = 74 ± 5% , q < 0.0001 ) was the best performing fea-
ture extracted at discriminating between MCS and UWS 
patients.

Entropy

ApEn in all frequency ranges was higher for MCS patients 
than UWS patients (delta: AUC = 57 ± 5% , q < 0.01 , 
theta: AUC = 55 ± 2% , q < 0.01 , alpha: AUC = 57 ± 5% , 
q < 0.001 , beta: AUC = 68 ± 2% , q < 0.001 ). Permutation 

entropy in the alpha range was also significantly higher for 
MCS patients ( AUC = 61 ± 2% , q < 0.0001).

Power in Alpha and Delta Frequency

Power in both the alpha frequencies was greater for 
MCS patients than UWS patients, and conversely for 
power in the delta frequencies. The measures performed 
similarly at distinguishing between UWS and MCS 
patients ( AUC = 54 ± 3% , q < 0.01 for alpha range and 
AUC = 58 ± 7% , q < 0.01 for delta range).

Connectivity

Only imaginary coherence in the theta band yielded sig-
nificant results. We found that coherence in the alpha 
and beta frequencies were higher for patients in UWS 
( AUC = 64 ± 4% , q < 0.001 in the alpha band and 
AUC = 61 ± 2% , q < 0.001 in the beta band). We also found 
that wSMI performed significantly in the theta range with t 
= 4 ( AUC = 60 ± 3% , q < 0.01 ), the alpha range with t = 4 
( AUC = 56 ± 4% , q < 0.01 ) and the delta range with t = 8 
( AUC = 69 ± 1% , q < 0.001 ). Transfer entropy performed 
similarly in all frequency bands, with transfer entropy in 
the alpha band yielding the best results ( AUC = 67 ± 3% , 
q < 0.0001).

Complex Network Analysis

We represented EEG signals as complex network graphs by 
thresholding coherence in the delta, theta, alpha and beta 
ranges, and found that both the characteristic path length 
and the clustering coefficient of these graphs successfully 
classified patients into UWS/MCS. The clustering coefficient 
of complex networks obtained by thresholding alpha coher-
ence yielded reasonable classification accuracy on average 
( AUC = 64 ± 1% , q < 0.001 ), without the threshold hav-
ing any significant effect. Similar results are obtained for 

Table 1  Characteristics of patients in the consciousness indexing 
group (N = 62)

Etiology Age at admission in years Gender DOC 
category at 
baseline

M F UWS MCS

Hypoxia 56.17 ± 14.08 17 12 28 1
TBI 39.71 ± 17.7 9 5 12 2
Ischemic stroke 47.00 ± 25.24 1 2 3 0
Brain tumor 74 0 1 0 1
ICH 62.33 ± 5.61 6 0 3 3
SAH 46.50 ± 9.59 3 5 4 4
Cerebral venous 

sinus throm-
bosis

25 0 1 1 0

Total 51.15 ± 16.42 36 26 51 11

Table 2  Characteristics of patients in the outcome prediction subgroup (N = 39)

Etiology Age at admission in years Gender DOC category at 
baseline

DOC category at follow-up Time from admis-
sion to follow-up in 
days

M F UWS MCS UWS MCS MCS+

Hypoxia 56.95 ± 16.19 13 7 20 0 18 2 0 457.70 ± 824.21
TBI 42.88 ± 17.08 8 1 9 0 8 0 1 434.67 ± 796.26
Ischemic stroke 61.5 ± 3.54 1 1 2 0 1 0 1 32.00 ± 32.53
ICH 65.00 ± 4.24 3 0 3 0 1 1 1 386.00 ± 614.89
SAH 46.00 ± 1.41 0 4 4 0 1 1 2 165.75 ± 231.56
Cerebral venous 

sinus thrombosis
25 0 1 1 0 0 0 1 153

Total 51.85 ± 17.57 25 14 39 0 29 4 6 386.36 ± 717.06
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average path length in the obtained by thresholding alpha 
coherence ( AUC = 65 ± 4% , q < 0.001 ) and beta coherence 
( AUC = 65 ± 5% , q < 0.001 ). See Supplementary Figs. 1 
and 2 for the distributions of clustering coefficients and path 
lengths with respect to state of consciousness.

Outcome prediction

Microstates

It appears that microstate A was particularly informa-
tive in predicting coma outcome. We found that the dura-
tion of microstate A in the delta band ( AUC = 75 ± 5% , 
q < 0.001 ), the frequency of microstate A in the theta band 
( AUC = 75 ± 10% , q < 0.01 ), the percentage of time spent in 
microstate A in the theta band ( AUC = 85 ± 2% , q < 0.0001 ) 
and the frequency of microstate A in the 2–20Hz band 
( AUC = 73 ± 3% , q < 0.0001 ) all perform significantly.

Entropy

ApEn in the alpha band efficiently predicted outcome 
( AUC = 67 ± 5% , q < 0.001 ), however permutation entropy 
performed better than ApEn: permutation entropy in the 
delta ( AUC = 71 ± 5% , q < 0.0001 ), theta ( AUC = 83 ± 3% , 
q < 0.0001 ) bands yielded promising results.

Power in the Alpha and Delta Frequency

Power in the alpha ( AUC = 64 ± 4% , q < 0.001 ) and delta 
( AUC = 68 ± 9% , q < 0.01 ) performed better at discriminat-
ing outcome than indexing consciousness.

Connectivity

Coherence in the theta band yielded high classifica-
tion accuracy ( AUC = 78 ± 2% , q < 0.0001 ). Alpha 
(  AUC = 62 ± 4% ,  q < 0.001 )  and beta coherence 
( AUC = 67 ± 1% , q < 0.0001 ) were also successful. Coher-
ence in all frequency ranges was greater for patients who 
improved condition. Interestingly, only the imaginary part 
of coherence in the beta band achieved significant results 
( AUC = 75 ± 2% , q < 0.0001 ) and did not offer an advan-
tage to magnitude-squared coherence as a classifier.

TE and wSMI also predicted patient outcome effec-
tively. We found that TE was successful at predicting out-
come both in the delta ( AUC = 70 ± 3% , q < 0.001 ) and 
alpha band ( AUC = 78 ± 3% , q < 0.001 ). We also found 
that wSMI in the alpha band with a time delay of 32 s 
( AUC = 73 ± 4% , q < 0.0001 ) exhibited the most notable 
prognostic power, but wSMI in the alpha band with t = 8 s 
( AUC = 71 ± 5% , q < 0.001 ) and in the delta band with 

t = 8 s ( AUC = 69 ± 8% , q < 0.001 ) also yielded significant 
results.

Complex Network Analysis

We found that clustering coefficients, calculated from beta 
coherence ( AUC = 82 ± 1% , q < 0.0001 ) and alpha coher-
ence ( AUC = 82 ± 2% , q < 0.0001 ) performed best at clas-
sifying patients into the two outcome categories, without the 
thresholds having much effect. Clustering coefficients in the 
theta (mean AUC = 72 ± 1% , q < 0.0001 ) range also exhib-
ited significant results. However, path length did not show 
a strong association with outcome. Here, the two outcomes 
correspond to emergence from UWS to MCS, or death or 
a persistent DOC. See Supplementary Figs. 2 and 4 for the 
distributions of clustering coefficients and path lengths with 
respect to outcome.

Automated Outcome Prediction

We selected an optimal subset of features with SFFS for an 
automated outcome prediction scheme. To avoid selection 
bias, we apply feature selection to each fold within cross-
validation and select the three features that are most repre-
sented to select features for a final model. A larger sample 
size, however, is needed to validate the robustness of these 
features as well as the risk of overfitting. It is our hope that 
this may at least demonstrate promise for approaches to 
EEG data analysis and coma studies that are grounded in 
quantification.

It consisted of the following three features: frequency of 
microstate A in the 2–20 Hz frequency band, path length 
obtained from thresholding alpha coherence, and cluster-
ing coefficient obtained from thresholding alpha coherence. 
Combining these features seemed to afford high prediction 
power ( AUC = 92 ± 4% ), as shown in Fig. 5.

Python and MATLAB toolboxes for the above calcula-
tions are freely available under the GNU public license for 
non-commercial use (https ://qeeg.wordp ress.com). Results 
are presented in greater detail in the online supplementary 
material.

Discussion

Most measures performed significantly better at predicting 
outcome of coma than at discriminating between UWS and 
MCS patients, indicating perhaps that the link between 
diagnosis and prognosis is not as compelling as originally 
thought, or perhaps that some patients had been errone-
ously classified, considering that in clinical practice mis-
diagnoses occur in up to 43% of cases, especially when an 
inappropriate behavioural scale is used (Schnakers et al. 

https://qeeg.wordpress.com
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2009). Additionally, these strictly-defined categories do 
not take into account that UWS patients may actually be 
minimally or even fully conscious (van Erp et al. 2015). As 
mentioned, we found that all connectivity measures were 
not significantly different for UWS and MCS patients, 
although many of these metrics were greater in UWS 
patients than MCS patients. This is in direct contrast to 
previous research on wSMI and TE which indicates that 
measures of connectivity systematically increase with 
degree of consciousness, although in previous work audi-
tory paradigm data was analysed whereas resting-state data 
was used in the present study (King et al. 2013; Thul et al. 
2016). We did however find greater wSMI, TE and coher-
ence (in all frequency ranges) in patients with improved 
outcome than those with unimproved outcome, indicat-
ing possible power of connectivity measures in prognosis 
instead of diagnosis.

Similarly, Lehembre et al. (2012) found that patients in 
UWS had significantly lower coherence than MCS patients 
in the theta and alpha bands. We did also observe this rela-
tionship, but the result was not significant. However, in a 
more recent study, Schorr et al. (2016) found that coherence 
could not be used to differentiate UWS and MCS patients, 
but could instead predict the recovery of UWS to MCS. The 
present study however did not find significant differences in 
the coherence between patients with improved and unim-
proved condition. This may be a consequence of averaging 
the coherence across all parts of the brain instead of investi-
gating the connectivity between different parts of the brain 
separately, as was done by Schorr et al. (2016).

There were however significant differences between 
entropy of MCS and UWS patients, with permutation 
entropy and ApEn significantly higher in MCS patients, in 
accordance with the previous findings (Thul et al. 2016; 
Gosseries et al. 2011). Similarly, we found that patients 
with improved outcome exhibited greater EEG entropy than 
those with unimproved outcomes. It is hypothesised that the 
increased entropy is reflective of the increased complexity of 
neural networks that are necessary to support consciousness.

Power in the alpha band was greater for MCS patients 
than for UWS patients, and delta power was greater for UWS 
patients compared to MCS patients as also found by Lehem-
bre et al. (2012), although the differences were not signifi-
cant. The power in the delta band, however, was significantly 
smaller for patients who improved condition.

Our analysis of the topologies of the different patient 
groups largely agrees with the findings presented in the 
study by Chennu et al., and we highlight their work in com-
paring EEG-based connectivity hubs to PET data and glu-
cose metabolism itself (Chennu et al. 2017). They show that 
these measures of connectivity correlate with the potential 
physiological underpinnings of consciousness, which may 
help to explain the relatively high performance of these 
measures at predicting outcome. Like in their work, we find 
that patients who improved condition exhibited greater con-
nectivity, indicated by higher average clustering coefficients, 
and shorter characteristic path lengths (see Supplementary 
Figures).

We also draw attention to work by Sitt et al. which simi-
larly to this study aimed to perform a large-scale analysis of 
the EEG measures in discriminating UWS and MCS patients 
(Sitt et al. 2014). This study complements much of this 
work, and further demonstrates differences in EEG features 
in predicting outcome as opposed to indexing consciousness.

Collectively, the comparison between these results seems 
to indicate that the results are dependent on the type of para-
digm used, and possibly various other specific parameters 
used in calculations, like the length of each trial. It is also 
interesting to note that the number of electrodes used in this 
study is significantly higher than those used in many previ-
ous studies, providing information at more locations across 
the scalp, potentially allowing for more robust results. This 
is by virtue of the fact that high channel-density recordings 
may provide information from more regions of the brain 
(and thus more reflective of overall brain dynamics) than low 
channel-density recordings, as well as by providing more 
data over the same period of time.

With regards to the microstate analysis, we found a very 
pronounced difference in the percentage of time spent in 
microstate D in the alpha frequency in the two patient groups 
with respect to outcome, with patients with unimproved out-
come spending more time in microstate D. It is possible that 
each microstate reflects an underlying neurological function, 

Fig. 5  ROC curve showing the performance of the combination 
of the three features selected using SFFS, namely the frequency of 
microstate A in the 2–20 Hz frequency band, path length obtained 
from thresholding alpha coherence and clustering coefficient obtained 
from thresholding alpha coherence
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as activity of different neural populations is responsible for 
the different landscapes of electrical potentials character-
ized by each microstate (Lehmann et al. 2006) This possibly 
indicates that improved outcome patients spend more time 
on other neurological tasks (represented by the other micro-
states) than unimproved outcome patients.

While effective and accurate, it is questionable whether 
the methods and measures studied here may perform suf-
ficiently well to replace current practice for prognosticating 
coma on an individual basis. However, the automatic clas-
sification scheme is simple and cost-effective to implement 
and may indeed provide supplemental information to bet-
ter inform medical practitioners when assessing prognosis. 
Moreover, the results of this study may not only be useful in 
clinical practice, but also in better understanding the nature 
of consciousness and the roots of disorders of conscious-
ness. However, an important goal of the present study was 
to investigate several EEG biomarkers of consciousness on 
the same dataset to be able to compare the relative useful-
ness of these features. Most features presented here are com-
monly applied in EEG analyses of consciousness, but it has 
remained unclear how they perform comparatively. We also 
aimed to apply measures that are ordinarily applied to index 
consciousness to instead predict outcome, thus avoiding the 
problem of misdiagnoses.

Recent theories attribute disorders of consciousness 
to the disconnection of different cortical networks, rather 
than the dysfunction of a single area of the brain (Ovadia-
Caro et al. 2012; Vanhaudenhuyse et al. 2010). For this 
reason, it may be important to investigate the network 
structures and motifs underlying consciousness and their 
interconnectedness through measures of functional con-
nectivity, like those explored in this study. It is possible 
that disorders of consciousness stem from a functional iso-
lation within the cerebral cortex, due to a derangement of 
neural networks and a consequent decrease in connectivity. 
The measures of connectivity, entropy and graph-theoreti-
cal statistics investigated here directly assess the degree of 
functional isolation through the investigation of the inter-
connectedness of subdivisions within the neural networks, 
as well as the complexity of these neural networks through 
the quantification of the unpredictability of its outputs. 
While the measures studied here do support this proposed 
theory of consciousness to some extent, it is entirely possi-
ble that other measures may better reflect true brain inter-
actions, and consequently be more successful at interro-
gating differences between positive and negative outcome 
patients. It is thus necessary to continue to propose EEG 
methods to accurately reveal interactions between different 
cortical networks, and compare the results to those from 
other brain imaging methods, such as fMRI. These new 
methods of analysis may then firstly contribute additional 

evidence to the leading theory or otherwise, and secondly 
prove to be more useful in prognosticating coma than the 
methods studied here.

Conclusion

Our results suggest that several mathematically precise 
biomarkers perform significantly better than expected 
by chance at predicting outcome of coma, with the 
most promising results obtained through the analysis of 
EEG signals represented as microstates. These series of 
sequential topographies of electrical fields possibly pro-
vide insight into the differences between UWS and MCS 
patients, as well as key differences between patients with 
improved and unimproved outcomes. As far as we know, 
microstate analysis had not previously been applied to out-
come prediction in this manner, such that this study is the 
first indication of the potential promise of this method.

An important goal of the study was to investigate sev-
eral EEG biomarkers of consciousness on the same dataset 
to be able to compare the relative usefulness of these fea-
tures. Most features presented here are commonly applied 
in EEG analyses of consciousness, but it has remained 
unclear how they perform comparatively. We also aimed 
to apply measures that are ordinarily applied to index con-
sciousness to instead predict outcome, thus avoiding the 
problem of misdiagnoses.

Lastly, we aimed to design an automated classification 
scheme using SFFS: we found that combining metrics such 
frequency of microstate A in the 2–20 Hz frequency band, 
path length obtained from thresholding alpha coherence, 
and clustering coefficient obtained from thresholding alpha 
coherence affords high prediction power with an AUC  of 
92 ± 4% . While this may still not be ideal for prognostica-
tion of individuals, it may indeed serve to better inform 
medical practitioners when assessing prognosis.
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